Plasmon-Induced Direct Hot-Carrier Transfer at Metal-Acceptor Interfaces

Priyank V. Kumar, Tuomas P. Rossi, Daniel Marti-Dafcik, Daniel Reichmuth, Mikael Kuisma, Paul Erhart, Martti J. Puska, David J. Norris*

*Corresponding author for this work

Research output: Contribution to journalArticleScientificpeer-review

72 Citations (Scopus)


Plasmon-induced hot-carrier transfer from a metal nanostructure to an acceptor is known to occur via two key mechanisms: (i) indirect transfer, where the hot carriers are produced in the metal nanostructure and subsequently transferred to the acceptor, and (ii) direct transfer, where the plasmons decay by directly exciting carriers from the metal to the acceptor. Unfortunately, an atomic-level understanding of the direct-transfer process, especially with regard to its quantification, remains elusive even though it is estimated to be more efficient compared to the indirect-transfer process. This is due to experimental challenges in separating direct from indirect transfer as both processes occur simultaneously at femtosecond time scales. Here, we employ time-dependent density-functional theory simulations to isolate and study the direct-transfer process at a model metal-acceptor (Ag 147 -Cd 33 Se 33 ) interface. Our simulations show that, for a 10 fs Gaussian laser pulse tuned to the plasmon frequency, the plasmon formed in the Ag 147 -Cd 33 Se 33 system decays within 10 fs and induces the direct transfer with a probability of about 40%. We decompose the direct-transfer process further and demonstrate that the direct injection of both electrons and holes into the acceptor, termed direct hot-electron transfer (DHET) and direct hot-hole transfer (DHHT), takes place with similar probabilities of about 20% each. Finally, effective strategies to control and tune the probabilities of DHET and DHHT processes are proposed. We envision our work to provide guidelines toward the design of metal-acceptor interfaces that enable more efficient plasmonic hot-carrier devices.

Original languageEnglish
Pages (from-to)3188-3195
Number of pages8
JournalACS Nano
Issue number3
Publication statusPublished - 26 Mar 2019
MoE publication typeA1 Journal article-refereed


  • direct transfer
  • hot electrons
  • hot holes
  • plasmon decay
  • time-dependent density-functional theory


Dive into the research topics of 'Plasmon-Induced Direct Hot-Carrier Transfer at Metal-Acceptor Interfaces'. Together they form a unique fingerprint.

Cite this