Abstract
The plasma etch characteristics of aluminum nitride (AlN) deposited by low-temperature, 200 °C, plasma enhanced atomic layer deposition (PEALD) was investigated for reactive ion etch (RIE) and inductively coupled plasma-reactive ion etch (ICP-RIE) systems using various mixtures of SF6 and O2 under different etch conditions. During RIE, the film exhibits good mask properties with etch rates below 10r nm/min. For ICP-RIE processes, the film exhibits exceptionally low etch rates in the subnanometer region with lower platen power. The AlN film’s removal occurred through physical mechanisms; consequently, rf power and chamber pressure were the most significant parameters in PEALD AlN film removal because the film was inert to the SF+x and O+ chemistries. The etch experiments showed the film to be a resilient masking material. This makes it an attractive candidate for use as an etch mask in demanding SF6 based plasma etch applications, such as through-wafer etching, or when oxide films are not suitable.
Original language | English |
---|---|
Article number | 011504 |
Pages (from-to) | 1-5 |
Number of pages | 5 |
Journal | JOURNAL OF VACUUM SCIENCE AND TECHNOLOGY A |
Volume | 30 |
Issue number | 1 |
DOIs | |
Publication status | Published - 2012 |
MoE publication type | A1 Journal article-refereed |