Projects per year
Abstract
Recent developments in the area of plant-based hydrogels are introduced, especially those derived from wood as a widely available, multiscale, and hierarchical source of nanomaterials, as well as other cell wall elements. With water being fundamental in a hydrogel, water interactions, hydration, and swelling, all critically important in designing, processing, and achieving the desired properties of sustainable and functional hydrogels, are highlighted. A plant, by itself, is a form of a hydrogel, at least at given states of development, and for this reason phenomena such as fluid transport, diffusion, capillarity, and ionic effects are examined. These aspects are highly relevant not only to plants, especially lignified tissues, but also to the porous structures produced after removal of water (foams, sponges, cryogels, xerogels, and aerogels). Thus, a useful source of critical and comprehensive information is provided regarding the synthesis of hydrogels from plant materials (and especially wood nanostructures), and about the role of water, not only for processing but for developing hydrogel properties and uses.
Original language | English |
---|---|
Number of pages | 31 |
Journal | Advanced Materials |
Early online date | 14 Jun 2020 |
DOIs | |
Publication status | E-pub ahead of print - 14 Jun 2020 |
MoE publication type | A2 Review article, Literature review, Systematic review |
Keywords
- biocolloids
- biohydrogels
- hydrogels
- nanocelluloses
- plants
- porous materials
- structuring
- water interactions
- wood
Fingerprint
Dive into the research topics of 'Plant Nanomaterials and Inspiration from Nature : Water Interactions and Hierarchically Structured Hydrogels'. Together they form a unique fingerprint.Projects
- 2 Finished
-
BioELCell: Bioproducts Engineered from Lignocelluloses: from plants and upcycling to next generation materials
Rojas Gaona, O., Abidnejad, R., Ajdary, R., Bhattarai, M., Zhu, Y., Zhao, B., Robertson, D., Reyes Torres, G., Johansson, L., Garcia Greca, L., Klockars, K., Kämäräinen, T., Majoinen, J., Tardy, B., Dufau Mattos, B. & Ressouche, E.
30/07/2018 → 31/07/2023
Project: EU: ERC grants
-
FinnCERES: Competence Center for the Materials Bioeconomy: A Flagship for our Sustainable Future
01/05/2018 → 31/12/2022
Project: Academy of Finland: Other research funding