Planetary Radio Interferometry and Doppler Experiment (PRIDE) technique: A test case of the Mars Express Phobos fly-by

Research output: Contribution to journalArticle

Researchers

  • D. A. Duev
  • S. V. Pogrebenko
  • G. Cimò
  • G. Molera Calvés
  • T. M. Bocanegra Bahamón
  • L. I. Gurvits
  • M. M. Kettenis
  • J. Kania
  • V. Tudose
  • P. Rosenblatt
  • J. C. Marty
  • V. Lainey
  • P. De Vicente
  • J. Quick
  • M. Nickola
  • A. Neidhardt
  • G. Kronschnabl
  • C. Ploetz
  • R. Haas
  • M. Lindqvist
  • And 16 others
  • A. Orlati
  • A. V. Ipatov
  • M. A. Kharinov
  • A. G. Mikhailov
  • J. E J Lovell
  • J. N. McCallum
  • J. Stevens
  • S. A. Gulyaev
  • T. Natush
  • S. Weston
  • W. H. Wang
  • B. Xia
  • W. J. Yang
  • L. F. Hao
  • J. Kallunki
  • O. Witasse

Research units

  • Lomonosov Moscow State University
  • Joint Institute for VLBI ERIC
  • ASTRON
  • CAS - Shanghai Astronomical Observatory
  • Delft University of Technology
  • Carnegie Mellon University
  • Institute for Space Sciences
  • Royal Observatory of Belgium
  • Centre national d'études spatiales
  • Observatoire de Paris
  • Observatorio de Yebes (IGN)
  • Hartebeesthoek Radio Astronomy Observatory
  • Federal Agency for Cartography and Geodesy
  • Chalmers University of Technology
  • University of Tasmania
  • CSIRO
  • Auckland University of Technology
  • Chinese Academy of Sciences
  • European Space Agency - ESA
  • California Institute of Technology
  • Radio Observatory Medicina
  • Russian Academy of Sciences

Abstract

Context. The closest ever fly-by of the Martian moon Phobos, performed by the European Space Agency's Mars Express spacecraft, gives a unique opportunity to sharpen and test the Planetary Radio Interferometry and Doppler Experiments (PRIDE) technique in the interest of studying planet-satellite systems. Aims. The aim of this work is to demonstrate a technique of providing high precision positional and Doppler measurements of planetary spacecraft using the Mars Express spacecraft. The technique will be used in the framework of Planetary Radio Interferometry and Doppler Experiments in various planetary missions, in particular in fly-by mode. Methods. We advanced a novel approach to spacecraft data processing using the techniques of Doppler and phase-referenced very long baseline interferometry spacecraft tracking. Results. We achieved, on average, mHz precision (30 μm/s at a 10 s integration time) for radial three-way Doppler estimates and sub-nanoradian precision for lateral position measurements, which in a linear measure (at a distance of 1.4 AU) corresponds to ∼50 m.

Details

Original languageEnglish
Article numberA34
Number of pages10
JournalAstronomy and Astrophysics
Volume593
Publication statusPublished - 1 Sep 2016
MoE publication typeA1 Journal article-refereed

    Research areas

  • Astrometry, Methods: data analysis, Techniques: interferometric, Techniques: miscellaneous

Download statistics

No data available

ID: 8084187