Planck intermediate results: XXXV. Probing the role of the magnetic field in the formation of structure in molecular clouds

Research output: Contribution to journalArticle

Researchers

  • P. A R Ade
  • N. Aghanim
  • M. I R Alves
  • M. Arnaud
  • D. Arzoumanian
  • M. Ashdown
  • J. Aumont
  • C. Baccigalupi
  • A. J. Banday
  • R. B. Barreiro
  • N. Bartolo
  • E. Battaner
  • K. Benabed
  • A. Benoît
  • A. Benoit-Lévy
  • J. P. Bernard
  • M. Bersanelli
  • P. Bielewicz
  • J. J. Bock
  • L. Bonavera
  • J. R. Bond
  • J. Borrill
  • F. R. Bouchet
  • F. Boulanger
  • A. Bracco
  • C. Burigana
  • E. Calabrese
  • J. F. Cardoso
  • A. Catalano
  • H. C. Chiang
  • P. R. Christensen
  • L. P L Colombo
  • C. Combet
  • F. Couchot
  • B. P. Crill
  • A. Curto
  • F. Cuttaia
  • L. Danese
  • R. D. Davies
  • R. J. Davis
  • P. De Bernardis
  • A. De Rosa
  • G. De Zotti
  • J. Delabrouille
  • C. Dickinson
  • J. M. Diego
  • H. Dole
  • S. Donzelli
  • O. Doré
  • M. Douspis
  • A. Ducout
  • X. Dupac
  • G. Efstathiou
  • F. Elsner
  • T. A. Enßlin
  • H. K. Eriksen
  • D. Falceta-Gonçalves
  • E. Falgarone
  • K. Ferrière
  • F. Finelli
  • O. Forni
  • M. Frailis
  • A. A. Fraisse
  • E. Franceschi
  • A. Frejsel
  • S. Galeotta
  • S. Galli
  • K. Ganga
  • T. Ghosh
  • M. Giard
  • E. Gjerløw
  • J. González-Nuevo
  • K. M. Górski
  • A. Gregorio
  • A. Gruppuso
  • J. E. Gudmundsson
  • V. Guillet
  • D. L. Harrison
  • G. Helou
  • P. Hennebelle
  • S. Henrot-Versillé
  • C. Hernández-Monteagudo
  • D. Herranz
  • S. R. Hildebrandt
  • E. Hivon
  • W. A. Holmes
  • A. Hornstrup
  • K. M. Huffenberger
  • G. Hurier
  • A. H. Jaffe
  • T. R. Jaffe
  • W. C. Jones
  • M. Juvela
  • E. Keihänen
  • R. Keskitalo
  • T. S. Kisner
  • J. Knoche
  • M. Kunz
  • H. Kurki-Suonio
  • G. Lagache
  • J. M. Lamarre
  • A. Lasenby
  • M. Lattanzi
  • C. R. Lawrence
  • R. Leonardi
  • F. Levrier
  • M. Liguori
  • P. B. Lilje
  • M. Linden-Vørnle
  • M. López-Caniego
  • P. M. Lubin
  • J. F. Macías-Pérez
  • D. Maino
  • N. Mandolesi
  • A. Mangilli
  • M. Maris
  • P. G. Martin
  • E. Martínez-González
  • S. Masi
  • S. Matarrese
  • A. Melchiorri
  • L. Mendes
  • A. Mennella
  • M. Migliaccio
  • M. A. Miville-Deschênes
  • A. Moneti
  • L. Montier
  • G. Morgante
  • D. Mortlock
  • D. Munshi
  • J. A. Murphy
  • P. Naselsky
  • F. Nati
  • C. B. Netterfield
  • F. Noviello
  • D. Novikov
  • I. Novikov
  • N. Oppermann
  • C. A. Oxborrow
  • L. Pagano
  • F. Pajot
  • R. Paladini
  • D. Paoletti
  • F. Pasian
  • L. Perotto
  • V. Pettorino
  • F. Piacentini
  • M. Piat
  • E. Pierpaoli
  • D. Pietrobon
  • S. Plaszczynski
  • E. Pointecouteau
  • G. Polenta
  • N. Ponthieu
  • G. W. Pratt
  • S. Prunet
  • J. L. Puget
  • J. P. Rachen
  • M. Reinecke
  • M. Remazeilles
  • C. Renault
  • A. Renzi
  • I. Ristorcelli
  • G. Rocha
  • M. Rossetti
  • G. Roudier
  • J. A. Rubiño-Martín
  • B. Rusholme
  • M. Sandri
  • D. Santos
  • G. Savini
  • D. Scott
  • Juan D. Soler
  • V. Stolyarov
  • R. Sudiwala
  • D. Sutton
  • A. S. Suur-Uski
  • J. F. Sygnet
  • J. A. Tauber
  • L. Terenzi
  • L. Toffolatti
  • M. Tomasi
  • M. Tristram
  • M. Tucci
  • G. Umana
  • L. Valenziano
  • J. Valiviita
  • B. Van Tent
  • P. Vielva
  • F. Villa
  • L. A. Wade
  • B. D. Wandelt
  • I. K. Wehus
  • N. Ysard
  • D. Yvon
  • A. Zonca

Research units

  • Cardiff University
  • CNRS/IN2P3
  • CNRS Centre National de la Recherche Scientifique
  • Kavli Institute for Cosmology Cambridge
  • International School for Advanced Studies
  • IRAP
  • Instituto de Física de Cantabria (CSIC-Universidad de Cantabria)
  • Universit'a di Rome Sapienza
  • Instituto Carlos I de Física Teórica y Computacional
  • UMR7095
  • CNRS/IN2P3
  • INAF/IASF Milano
  • Jet Propulsion Laboratory, California Institute of Technology
  • Instituto Astrofisico de Canarias
  • University of Toronto
  • University of California at Santa Barbara
  • Institut d 'Astrophysique de Paris
  • University of Oxford
  • Télécom ParisTech
  • Princeton University
  • Niels Bohr Institute
  • Université Paris-Sud
  • Istituto di Astrofisica Spaziale e Fisica Cosmica di Bologna
  • University of Manchester
  • Jodrell Bank Centre for Astrophysics
  • Università La Sapienza
  • Université Sorbonne Paris Cité
  • Urbanización Villafranca Del Castillo
  • University of Cambridge
  • Max-Planck-Institut für Astrophysik
  • University of Oslo
  • University of Edinburgh
  • LERMA - Laboratoire d'Etudes du Rayonnement et de la Matiere en Astrophysique et Atmospheres
  • Osservatorio Astronomico di Trieste
  • University of Chicago
  • University of Warsaw
  • California Institute of Technology
  • Danmarks Tekniske Universitet
  • Florida State University
  • Imperial College London
  • University of Helsinki
  • Lawrence Berkeley National Laboratory
  • University of Ferrara
  • National University of Ireland, Galway
  • RAS - P.N. Lebedev Physics Institute
  • Institut für Theoretische Astrophysik
  • University of Southern California
  • Osservatorio Astronomico Roma
  • Università di Roma Tor Vergata
  • University College London
  • University of British Columbia
  • Special Astrophysical Observatory, Russian Academy of Sciences
  • ESTEC - European Space Research and Technology Centre
  • Université de Genève
  • INAF, Osservatorio Astrofisico di Catania
  • Université Paris Diderot

Abstract

Within ten nearby (d < 450 pc) Gould belt molecular clouds we evaluate statistically the relative orientation between the magnetic field projected on the plane of sky, inferred from the polarized thermal emission of Galactic dust observed by Planck at 353 GHz, and the gas column density structures, quantified by the gradient of the column density, NH. The selected regions, covering several degrees in size, are analysed at an effective angular resolution of 10′ FWHM, thus sampling physical scales from 0.4 to 40 pc in the nearest cloud. The column densities in the selected regions range from NH ≈ 1021 to 1023 cm-2, and hence they correspond to the bulk of the molecular clouds. The relative orientation is evaluated pixel by pixel and analysed in bins of column density using the novel statistical tool called "histogram of relative orientations". Throughout this study, we assume that the polarized emission observed by Planck at 353 GHz is representative of the projected morphology of the magnetic field in each region, i.e., we assume a constant dust grain alignment efficiency, independent of the local environment. Within most clouds we find that the relative orientation changes progressively with increasing NH, from mostly parallel or having no preferred orientation to mostly perpendicular. In simulations of magnetohydrodynamic turbulence in molecular clouds this trend in relative orientation is a signature of Alfvénic or sub-Alfvénic turbulence, implying that the magnetic field is significant for the gas dynamics at the scales probed by Planck. We compare the deduced magnetic field strength with estimates we obtain from other methods and discuss the implications of the Planck observations for the general picture of molecular cloud formation and evolution.

Details

Original languageEnglish
Article numberA138
Number of pages29
JournalAstronomy and Astrophysics
Volume586
Publication statusPublished - 1 Feb 2016
MoE publication typeA1 Journal article-refereed

    Research areas

  • Dust, extinction, Infrared: ISM, ISM: clouds, ISM: general, ISM: magnetic fields, Submillimeter: ISM

ID: 9919455