Planck intermediate results: XXXIV. The magnetic field structure in the Rosette Nebula

Research output: Contribution to journalArticle

Researchers

  • N. Aghanim
  • M. I R Alves
  • M. Arnaud
  • D. Arzoumanian
  • J. Aumont
  • C. Baccigalupi
  • A. J. Banday
  • R. B. Barreiro
  • N. Bartolo
  • E. Battaner
  • K. Benabed
  • A. Benoit-Lévy
  • J. P. Bernard
  • M. Bersanelli
  • P. Bielewicz
  • A. Bonaldi
  • L. Bonavera
  • J. R. Bond
  • J. Borrill
  • F. R. Bouchet
  • F. Boulanger
  • A. Bracco
  • C. Burigana
  • E. Calabrese
  • J. F. Cardoso
  • A. Catalano
  • A. Chamballu
  • H. C. Chiang
  • P. R. Christensen
  • S. Colombi
  • L. P L Colombo
  • C. Combet
  • F. Couchot
  • B. P. Crill
  • A. Curto
  • F. Cuttaia
  • L. Danese
  • R. D. Davies
  • R. J. Davis
  • P. De Bernardis
  • A. De Rosa
  • G. De Zotti
  • J. Delabrouille
  • C. Dickinson
  • J. M. Diego
  • H. Dole
  • S. Donzelli
  • O. Doré
  • M. Douspis
  • A. Ducout
  • X. Dupac
  • G. Efstathiou
  • F. Elsner
  • T. A. Enßlin
  • H. K. Eriksen
  • E. Falgarone
  • K. Ferrière
  • F. Finelli
  • O. Forni
  • M. Frailis
  • A. A. Fraisse
  • E. Franceschi
  • A. Frejsel
  • S. Galeotta
  • S. Galli
  • K. Ganga
  • T. Ghosh
  • M. Giard
  • E. Gjerløw
  • J. González-Nuevo
  • K. M. Górski
  • A. Gregorio
  • A. Gruppuso
  • V. Guillet
  • F. K. Hansen
  • D. Hanson
  • D. L. Harrison
  • S. Henrot-Versillé
  • D. Herranz
  • S. R. Hildebrandt
  • E. Hivon
  • M. Hobson
  • W. A. Holmes
  • A. Hornstrup
  • W. Hovest
  • K. M. Huffenberger
  • G. Hurier
  • A. H. Jaffe
  • T. R. Jaffe
  • J. Jewell
  • M. Juvela
  • R. Keskitalo
  • T. S. Kisner
  • J. Knoche
  • M. Kunz
  • H. Kurki-Suonio
  • G. Lagache
  • J. M. Lamarre
  • A. Lasenby
  • M. Lattanzi
  • C. R. Lawrence
  • R. Leonardi
  • F. Levrier
  • M. Liguori
  • P. B. Lilje
  • M. Linden-Vørnle
  • M. López-Caniego
  • P. M. Lubin
  • J. F. Macías-Pérez
  • B. Maffei
  • D. Maino
  • N. Mandolesi
  • A. Mangilli
  • M. Maris
  • P. G. Martin
  • E. Martínez-González
  • S. Masi
  • S. Matarrese
  • A. Melchiorri
  • L. Mendes
  • A. Mennella
  • M. Migliaccio
  • M. A. Miville-Deschênes
  • A. Moneti
  • L. Montier
  • G. Morgante
  • D. Mortlock
  • A. Moss
  • D. Munshi
  • J. A. Murphy
  • P. Naselsky
  • F. Nati
  • P. Natoli
  • C. B. Netterfield
  • F. Noviello
  • D. Novikov
  • I. Novikov
  • N. Oppermann
  • L. Pagano
  • F. Pajot
  • R. Paladini
  • D. Paoletti
  • F. Pasian
  • G. Patanchon
  • O. Perdereau
  • V. Pettorino
  • F. Piacentini
  • M. Piat
  • D. Pietrobon
  • S. Plaszczynski
  • E. Pointecouteau
  • G. Polenta
  • N. Ponthieu
  • G. W. Pratt
  • G. Prézeau
  • S. Prunet
  • J. L. Puget
  • R. Rebolo
  • M. Reinecke
  • M. Remazeilles
  • C. Renault
  • A. Renzi
  • I. Ristorcelli
  • G. Rocha
  • C. Rosset
  • M. Rossetti
  • G. Roudier
  • J. A. Rubiño-Martín
  • B. Rusholme
  • M. Sandri
  • D. Santos
  • G. Savini
  • D. Scott
  • J. D. Soler
  • L. D. Spencer
  • V. Stolyarov
  • D. Sutton
  • A. S. Suur-Uski
  • J. F. Sygnet
  • J. A. Tauber
  • L. Terenzi
  • L. Toffolatti
  • M. Tomasi
  • M. Tristram
  • M. Tucci
  • J. Tuovinen
  • L. Valenziano
  • J. Valiviita
  • B. Van Tent
  • P. Vielva
  • F. Villa
  • L. A. Wade
  • B. D. Wandelt
  • I. K. Wehus
  • H. Wiesemeyer
  • D. Yvon
  • A. Zacchei
  • A. Zonca

Research units

  • CNRS/IN2P3
  • IRAP
  • Université Paris Diderot
  • International School for Advanced Studies
  • Instituto de Física de Cantabria (CSIC-Universidad de Cantabria)
  • Universit'a di Rome Sapienza
  • Instituto Carlos I de Física Teórica y Computacional
  • UMR7095
  • INAF/IASF Milano
  • University of Manchester
  • University of Toronto
  • University of California at Santa Barbara
  • University of Oxford
  • Télécom ParisTech
  • CNRS/IN2P3
  • Princeton University
  • Niels Bohr Institute
  • Jet Propulsion Laboratory, California Institute of Technology
  • Université Paris-Sud
  • California Institute of Technology
  • Istituto di Astrofisica Spaziale e Fisica Cosmica di Bologna
  • Jodrell Bank Centre for Astrophysics
  • Università La Sapienza
  • Université Sorbonne Paris Cité
  • CNRS Centre National de la Recherche Scientifique
  • Urbanización Villafranca Del Castillo
  • University of Cambridge
  • Max-Planck-Institut für Astrophysik
  • University of Oslo
  • LERMA - Laboratoire d'Etudes du Rayonnement et de la Matiere en Astrophysique et Atmospheres
  • Osservatorio Astronomico di Trieste
  • University of Warsaw
  • McGill University
  • Kavli Institute for Cosmology Cambridge
  • Danmarks Tekniske Universitet
  • Florida State University
  • University of Helsinki
  • Lawrence Berkeley National Laboratory
  • University of Ferrara
  • Università Degli Studi di Padova
  • Imperial College London
  • University of Nottingham
  • Cardiff University
  • National University of Ireland, Galway
  • RAS - P.N. Lebedev Physics Institute
  • Institut für Theoretische Astrophysik
  • Osservatorio Astronomico Roma
  • Instituto Astrofisico de Canarias
  • Università di Roma Tor Vergata
  • University College London
  • University of British Columbia
  • Special Astrophysical Observatory, Russian Academy of Sciences
  • ESTEC - European Space Research and Technology Centre
  • Université de Genève
  • Trinity College Dublin
  • Max Planck Institute for Radio Astronomy

Abstract

Planck has mapped the polarized dust emission over the whole sky, making it possible to trace the Galactic magnetic field structure that pervades the interstellar medium (ISM). We combine polarization data from Planck with rotation measure (RM) observations towards a massive star-forming region, the Rosette Nebula in the Monoceros molecular cloud, to study its magnetic field structure and the impact of an expanding H ii region on the morphology of the field. We derive an analytical solution for the magnetic field, assumed to evolve from an initially uniform configuration following the expansion of ionized gas and the formation of a shell of swept-up ISM. From the RM data we estimate a mean value of the line-of-sight component of the magnetic field of about 3 μG (towards the observer) in the Rosette Nebula, for a uniform electron density of about 12 cm-3. The dust shell that surrounds the Rosette H ii region is clearly observed in the Planck intensity map at 353 GHz, with a polarization signal significantly different from that of the local background when considered asa whole. The Planck observations constrain the plane-of-the-sky orientation of the magnetic field in the Rosette's parent molecular cloud to be mostly aligned with the large-scale field along the Galactic plane. The Planck data are compared with the analytical model, which predicts the mean polarization properties of a spherical and uniform dust shell for a given orientation of the field. This comparison leads to an upper limit of about 45° on the angle between the line of sight and the magnetic field in the Rosette complex, for an assumed intrinsic dust polarization fraction of 4%. This field direction can reproduce the RM values detected in the ionized region if the magnetic field strength in the Monoceros molecular cloud is in the range 6.5-9 μG. The present analytical model is able to reproduce the RM distribution across the ionized nebula, as well as the mean dust polarization properties of the swept-up shell, and can be directly applied to other similar objects.

Details

Original languageEnglish
Article numberA137
Number of pages16
JournalAstronomy and Astrophysics
Volume586
Publication statusPublished - 1 Feb 2016
MoE publication typeA1 Journal article-refereed

    Research areas

  • ISM: magnetic fields, polarization, radiation mechanisms: general, radio continuum: ISM, submillimeter: ISM

ID: 9919922