Pixel and Feature Transfer Fusion for Unsupervised Cross-Dataset Person Reidentification

Yang Yang, Guan'an Wang, Prayag Tiwari, Hari Mohan Pandey, Zhen Lei

Research output: Contribution to journalArticleScientificpeer-review

14 Citations (Scopus)
76 Downloads (Pure)

Abstract

Recently, unsupervised cross-dataset person reidentification (Re-ID) has attracted more and more attention, which aims to transfer knowledge of a labeled source domain to an unlabeled target domain. There are two common frameworks: one is pixel-alignment of transferring low-level knowledge, and the other is feature-alignment of transferring high-level knowledge. In this article, we propose a novel recurrent autoencoder (RAE) framework to unify these two kinds of methods and inherit their merits. Specifically, the proposed RAE includes three modules, i.e., a feature-transfer (FT) module, a pixel-transfer (PT) module, and a fusion module. The FT module utilizes an encoder to map source and target images to a shared feature space. In the space, not only features are identity-discriminative but also the gap between source and target features is reduced. The PT module takes a decoder to reconstruct original images with its features. Here, we hope that the images reconstructed from target features are in the source style. Thus, the low-level knowledge can be propagated to the target domain. After transferring both high- and low-level knowledge with the two proposed modules above, we design another bilinear pooling layer to fuse both kinds of knowledge. Extensive experiments on Market-1501, DukeMTMC-ReID, and MSMT17 datasets show that our method significantly outperforms either pixel-alignment or feature-alignment Re-ID methods and achieves new state-of-the-art results.

Original languageEnglish
Pages (from-to)4220-4232
Number of pages13
JournalIEEE Transactions on Neural Networks and Learning Systems
Volume36
Issue number3
Early online date30 Nov 2021
DOIs
Publication statusPublished - 1 Mar 2025
MoE publication typeA1 Journal article-refereed

Keywords

  • Adaptation models
  • Cameras
  • Data models
  • Feature fusion
  • generate adversarial nets
  • Image reconstruction
  • Lighting
  • Measurement
  • person reidentification (Re-ID)
  • Scalability
  • unsupervised learning.

Fingerprint

Dive into the research topics of 'Pixel and Feature Transfer Fusion for Unsupervised Cross-Dataset Person Reidentification'. Together they form a unique fingerprint.

Cite this