Personalized Graph Federated Learning With Differential Privacy

Francois Gauthier*, Vinay Chakravarthi Gogineni, Stefan Werner, Yih Fang Huang, Anthony Kuh

*Corresponding author for this work

Research output: Contribution to journalArticleScientificpeer-review

1 Citation (Scopus)


This paper presents a personalized graph federated learning (PGFL) framework in which distributedly connected servers and their respective edge devices collaboratively learn device or cluster-specific models while maintaining the privacy of every individual device. The proposed approach exploits similarities among different models to provide a more relevant experience for each device, even in situations with diverse data distributions and disproportionate datasets. Furthermore, to ensure a secure and efficient approach to collaborative personalized learning, we study a variant of the PGFL implementation that utilizes differential privacy, specifically zero-concentrated differential privacy, where a noise sequence perturbs model exchanges. Our mathematical analysis shows that the proposed privacy-preserving PGFL algorithm converges to the optimal cluster-specific solution for each cluster in linear time. It also reveals that exploiting similarities among clusters could lead to an alternative output whose distance to the original solution is bounded and that this bound can be adjusted by modifying the algorithm's hyperparameters. Further, our analysis shows that the algorithm ensures local differential privacy for all clients in terms of zero-concentrated differential privacy. Finally, the effectiveness of the proposed PGFL algorithm is showcased through numerical experiments conducted in the context of regression and classification tasks using some of the National Institute of Standards and Technology's (NIST's) datasets, namely, MNIST, and MedMNIST.

Original languageEnglish
Pages (from-to)736-749
Number of pages14
JournalIEEE Transactions on Signal and Information Processing over Networks
Publication statusPublished - 2023
MoE publication typeA1 Journal article-refereed


  • Differential privacy
  • federated learning
  • graph federated architecture
  • personalized learning
  • zero-concentrated differential privacy


Dive into the research topics of 'Personalized Graph Federated Learning With Differential Privacy'. Together they form a unique fingerprint.

Cite this