Projects per year
Abstract
Quantum computation relies on accurate measurements of qubits not only for reading the output of the calculation, but also to perform error correction. Most proposed scalable silicon architectures utilize Pauli blockade of triplet states for spin-to-charge conversion. In recent experiments there have been instances when instead of conventional triplet blockade readout, Pauli blockade is sustained only between parallel spin configurations, with vertical bar T-0 > relaxing quickly to the singlet state and leaving vertical bar T+> and vertical bar T-> states blockaded-which we call parity readout. Both types of blockade can be used for readout in quantum computing, but it is crucial to maximize the fidelity and understand in which regime the system operates. We devise and perform an experiment in which the crossover between parity and singlet-triplet readout can be identified by investigating the underlying physics of the vertical bar T-0 > relaxation rate. This rate is tunable over 4 orders of magnitude by controlling the Zeeman energy difference between the dots induced by spin-orbit coupling, which in turn depends on the direction of the applied magnetic field. We suggest a theoretical model incorporating charge noise and relaxation effects that explains quantitatively our results. Investigating the model both analytically and numerically, we identify strategies to obtain on demand either singlet-triplet or parity readout consistently across large arrays of dots. We also discuss how parity readout can be used to perform full two-qubit state tomography and its impact on quantum error-detection schemes in large-scale silicon quantum computers.
Original language | English |
---|---|
Article number | 010303 |
Number of pages | 12 |
Journal | PRX Quantum |
Volume | 2 |
Issue number | 1 |
DOIs | |
Publication status | Published - 7 Jan 2021 |
MoE publication type | A1 Journal article-refereed |
Keywords
- ELECTRON-SPIN
- COHERENCE
- FIDELITY
- NOISE
- QUBIT
- GATE
Fingerprint
Dive into the research topics of 'Pauli Blockade in Silicon Quantum Dots with Spin-Orbit Control'. Together they form a unique fingerprint.Projects
- 3 Finished
-
CRYOMET: Fast Cryogenic Microwave Photon Power Metrology in Superconducting Quantum Circuits (CRYOMET)
Tan, K. (Principal investigator), Sevriuk, V. (Project Member), Zamora Zamora, R. (Project Member), Rasola, M. (Project Member), Santos Teixeira, W. (Project Member) & Gunyho, A. (Project Member)
01/09/2018 → 31/08/2022
Project: Academy of Finland: Other research funding
-
SPINBUS: Quantum Bus for a Quantum Computer Based on Spins in Silicon
Tan, K. (Principal investigator)
01/09/2017 → 31/08/2022
Project: Academy of Finland: Other research funding
-
SPINBUS: Quantum Bus for a Quantum Computer Based on Spins in Silicon (SPINBUS)
Tan, K. (Principal investigator), Jenei, M. (Project Member), Sevriuk, V. (Project Member), Kalliokoski, M. (Project Member), Keränen, A. (Project Member), Kokkoniemi, R. (Project Member), Zamora Zamora, R. (Project Member) & Catto, G. (Project Member)
01/09/2017 → 31/08/2020
Project: Academy of Finland: Other research funding