Abstract
In this study we present for the first time tetrahedral amorphous carbon (ta-
C) a partially reduced graphene oxide (PRGO) hybrid electrode nanomaterial platform for electrochemical sensing of dopamine (DA). Graphene oxide was synthesized with the modified Hummer’s method. Before modification of ta-C by drop casting, partial reduction of the GO was carried out to improve electrochemical properties and adhesion to the ta-C thin film. A facile nitric acid treatment that slightly reoxidized the surface and modified the surface chemistry was subsequently performed to further improve the electrochemical
properties of the electrodes. The largest relative increase was seen in carboxyl groups. The HNO3 treatment increased the sensitivity toward DA and AA and resulted in a cathodic shift in the oxidation of AA. The fabricated hybrid electrodes were characterized with scanning electron microscopy (SEM), Raman spectroscopy, Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), X-ray absorption spectroscopy (XAS), and
electrochemical impedance spectroscopy (EIS). Compared to the plain ta-C electrode the hybrid electrode was shown to exhibit superior sensitivity and selectivity toward DA in the presence of ascorbic acid (AA), enabling simultaneous sensing of AA and DA close to the physiological concentrations by cyclic voltammetry (CV) and by differential pulse voltammetry (DPV). Two linear
ranges of 0−1 μM and 1−100 μM and a detection limit (S/N = 3.3) of 2.6 nM for DA were determined by means of cyclic voltammetry. Hence, the current work provides a fully CMOS-compatible carbon based hybrid nanomaterial that shows potential for in vivo measurements of DA.
C) a partially reduced graphene oxide (PRGO) hybrid electrode nanomaterial platform for electrochemical sensing of dopamine (DA). Graphene oxide was synthesized with the modified Hummer’s method. Before modification of ta-C by drop casting, partial reduction of the GO was carried out to improve electrochemical properties and adhesion to the ta-C thin film. A facile nitric acid treatment that slightly reoxidized the surface and modified the surface chemistry was subsequently performed to further improve the electrochemical
properties of the electrodes. The largest relative increase was seen in carboxyl groups. The HNO3 treatment increased the sensitivity toward DA and AA and resulted in a cathodic shift in the oxidation of AA. The fabricated hybrid electrodes were characterized with scanning electron microscopy (SEM), Raman spectroscopy, Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), X-ray absorption spectroscopy (XAS), and
electrochemical impedance spectroscopy (EIS). Compared to the plain ta-C electrode the hybrid electrode was shown to exhibit superior sensitivity and selectivity toward DA in the presence of ascorbic acid (AA), enabling simultaneous sensing of AA and DA close to the physiological concentrations by cyclic voltammetry (CV) and by differential pulse voltammetry (DPV). Two linear
ranges of 0−1 μM and 1−100 μM and a detection limit (S/N = 3.3) of 2.6 nM for DA were determined by means of cyclic voltammetry. Hence, the current work provides a fully CMOS-compatible carbon based hybrid nanomaterial that shows potential for in vivo measurements of DA.
Original language | English |
---|---|
Pages (from-to) | 8153–8164 |
Journal | Journal of Physical Chemistry C |
DOIs | |
Publication status | Published - 2017 |
MoE publication type | A1 Journal article-refereed |
Fingerprint
Dive into the research topics of 'Partially Reduced Graphene Oxide Modified Tetrahedral Amorphous Carbon Thin-Film Electrodes as a Platform for Nanomolar Detection of Dopamine'. Together they form a unique fingerprint.Equipment
-
Raw Materials Research Infrastructure
Karppinen, M. (Manager)
School of Chemical EngineeringFacility/equipment: Facility