Packaging DNA origami into viral protein cages

Veikko Linko, Joona Mikkilä, Mauri A. Kostiainen*

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingChapterScientificpeer-review

2 Citations (Scopus)
186 Downloads (Pure)


The DNA origami technique is a widely used method to create customized, complex, spatially well-defined two-dimensional (2D) and three-dimensional (3D) DNA nanostructures. These structures have huge potential to serve as smart drug-delivery vehicles and molecular devices in various nanomedical and biotechnological applications. However, so far only little is known about the behavior of these novel structures in living organisms or in cell culture/tissue models. Moreover, enhancing pharmacokinetic bioavailability and transfection properties of such structures still remains a challenge. One intriguing approach to overcome these issues is to coat DNA origami nanostructures with proteins or lipid membranes. Here, we show how cowpea chlorotic mottle virus (CCMV) capsid proteins (CPs) can be used for coating DNA origami nanostructures. We present a method for disassembling native CCMV particles and isolating the pure CP dimers, which can further bind and encapsulate a rectangular DNA origami shape. Owing to the highly programmable nature of DNA origami, packaging of DNA nanostructures into viral protein cages could find imminent uses in enhanced targeting and cellular delivery of various active nano-objects, such as enzymes and drug molecules.

Original languageEnglish
Title of host publicationVirus-Derived Nanoparticles for Advanced Technologies
EditorsChristina Wege, George P. Lomonossoff
Number of pages11
ISBN (Electronic)978-1-4939-7808-3
Publication statusPublished - 1 Jan 2018
MoE publication typeA3 Part of a book or another research book

Publication series

NameMethods in Molecular Biology
ISSN (Print)1064-3745


  • CCMV
  • DNA nanotechnology
  • DNA origami
  • Electrostatic assembly
  • Nucleic acids
  • Self-assembly
  • Virus capsid protein

Fingerprint Dive into the research topics of 'Packaging DNA origami into viral protein cages'. Together they form a unique fingerprint.

Cite this