Overview of physics studies on ASDEX Upgrade

Research output: Contribution to journalReview ArticleScientificpeer-review

Researchers

  • H. Meyer
  • C. Angioni
  • C. G. Albert
  • N. Arden
  • R. Arredondo Parra
  • M. De Baar
  • M. Balden
  • V. Bandaru
  • K. Behler
  • A. Bergmann
  • J. Bernardo
  • M. Bernert
  • A. Biancalani
  • R. Bilato
  • G. Birkenmeier
  • T. C. Blanken
  • V. Bobkov
  • A. Bock
  • T. Bolzonella
  • A. Bortolon
  • B. Böswirth
  • C. Bottereau
  • A. Bottino
  • H. Van Den Brand
  • S. Brezinsek
  • D. Brida
  • F. Brochard
  • C. Bruhn
  • J. Buchanan
  • A. Buhler
  • A. Burckhart
  • Y. Camenen
  • D. Carlton
  • M. Carr
  • D. Carralero
  • C. Castaldo
  • M. Cavedon
  • C. Cazzaniga
  • S. Ceccuzzi
  • C. Challis
  • A. Chankin
  • S. Chapman
  • C. Cianfarani
  • F. Clairet
  • S. Coda
  • R. Coelho
  • J. W. Coenen
  • L. Colas
  • G. D. Conway
  • S. Costea
  • D. P. Coster
  • T. B. Cote
  • A. Creely
  • G. Croci
  • G. Cseh
  • A. Czarnecka
  • I. Cziegler
  • O. D'Arcangelo
  • P. David
  • C. Day
  • R. Delogu
  • P. De Marné
  • S. S. Denk
  • P. Denner
  • M. Dibon
  • A. Di Siena
  • D. Douai
  • A. Drenik
  • R. Drube
  • M. Dunne
  • B. P. Duval
  • R. Dux
  • T. Eich
  • S. Elgeti
  • K. Engelhardt
  • B. Erdös
  • I. Erofeev
  • B. Esposito
  • E. Fable
  • M. Faitsch
  • U. Fantz
  • H. Faugel
  • I. Faust
  • F. Felici
  • J. Ferreira
  • S. Fietz
  • A. Figuereido
  • R. Fischer
  • O. Ford
  • L. Frassinetti
  • S. Freethy
  • M. Fröschle
  • G. Fuchert
  • J. C. Fuchs
  • H. Fünfgelder
  • K. Galazka
  • J. Galdon-Quiroga
  • A. Gallo
  • Y. Gao
  • S. Garavaglia
  • A. Garcia-Carrasco
  • M. Garcia-Munoz
  • B. Geiger
  • L. Giannone
  • L. Gil
  • E. Giovannozzi
  • C. Gleason-González
  • S. Glöggler
  • M. Gobbin
  • T. Görler
  • I. Gomez Ortiz
  • J. Gonzalez Martin
  • T. Goodman
  • G. Gorini
  • D. Gradic
  • A. Grater
  • G. Granucci
  • H. Greuner
  • M. Griener
  • A. Gude
  • S. Günter
  • L. Guimarais
  • G. Haas
  • A. H. Hakola
  • C. Ham
  • T. Happel
  • N. Den Harder
  • G. F. Harrer
  • J. Harrison
  • V. Hauer
  • T. Hayward-Schneider
  • C. C. Hegna
  • B. Heinemann
  • S. Heinzel
  • T. Hellsten
  • S. Henderson
  • P. Hennequin
  • A. Herrmann
  • M. F. Heyn
  • E. Heyn
  • F. Hitzler
  • J. Hobirk
  • K. Höfler
  • M. Hölzl
  • T. Höschen
  • J. H. Holm
  • C. Hopf
  • W. A. Hornsby
  • L. Horvath
  • A. Houben
  • A. Huber
  • V. Igochine
  • T. Ilkei
  • I. Ivanova-Stanik
  • W. Jacob
  • A. S. Jacobsen
  • F. Janky
  • A. Jansen Van Vuuren
  • A. Jardin
  • F. Jaulmes
  • F. Jenko
  • T. Jensen
  • E. Joffrin
  • C. P. Kasemann
  • A. Kallenbach
  • S. Kálvin
  • M. Kantor
  • A. Kappatou
  • O. Kardaun
  • S. Kasilov
  • Y. Kazakov
  • W. Kernbichler
  • A. Kirk
  • S. Kjer Hansen
  • V. Klevarova
  • G. Kocsis
  • A. Köhn
  • M. Koubiti
  • K. Krieger
  • A. Krivska
  • A. Kramer-Flecken
  • O. Kudlacek
  • B. Kurzan
  • B. Labit
  • K. Lackner
  • F. Laggner
  • P. T. Lang
  • P. Lauber
  • A. Lebschy
  • N. Leuthold
  • M. Li
  • O. Linder
  • B. Lipschultz
  • F. Liu
  • Y. Liu
  • A. Lohs
  • Z. Lu
  • T. Luda Di Cortemiglia
  • N. C. Luhmann
  • R. Lunsford
  • T. Lunt
  • A. Lyssoivan
  • T. Maceina
  • J. Madsen
  • R. Maggiora
  • H. Maier
  • O. Maj
  • J. Mailloux
  • R. Maingi
  • E. Maljaars
  • P. Manas
  • A. Mancini
  • A. Manhard
  • M. E. Manso
  • P. Mantica
  • M. Mantsinen
  • P. Manz
  • M. Maraschek
  • C. Martens
  • P. Martin
  • L. Marrelli
  • A. Martitsch
  • M. Mayer
  • D. Mazon
  • P. J. McCarthy
  • R. McDermott
  • H. Meister
  • A. Medvedeva
  • R. Merkel
  • A. Merle
  • V. Mertens
  • D. Meshcheriakov
  • O. Meyer
  • J. Miettunen
  • D. Milanesio
  • F. Mink
  • A. Mlynek
  • F. Monaco
  • C. Moon
  • F. Nabais
  • A. Nemes-Czopf
  • G. Neu
  • R. Neu
  • A. H. Nielsen
  • S. K. Nielsen
  • V. Nikolaeva
  • M. Nocente
  • J. M. Noterdaeme
  • I. Novikau
  • S. Nowak
  • M. Oberkofler
  • M. Oberparleiter
  • R. Ochoukov
  • T. Odstrcil
  • J. Olsen
  • F. Orain
  • F. Palermo
  • O. Pan
  • G. Papp
  • A. Pau
  • G. Pautasso
  • F. Penzel
  • P. Petersson
  • J. Pinzón Acosta
  • P. Piovesan
  • C. Piron
  • R. Pitts
  • U. Plank
  • B. Plaum
  • B. Ploeckl
  • V. Plyusnin
  • G. Pokol
  • E. Poli
  • L. Porte
  • S. Potzel
  • D. Prisiazhniuk
  • T. Pütterich
  • M. Ramisch
  • J. Rasmussen
  • G. A. Rattá
  • S. Ratynskaia
  • G. Raupp
  • G. L. Ravera
  • D. Réfy
  • M. Reich
  • F. Reimold
  • D. Reiser
  • T. Ribeiro
  • J. Riesch
  • R. Riedl
  • D. Rittich
  • J. F. Rivero-Rodriguez
  • G. Rocchi
  • M. Rodriguez-Ramos
  • V. Rohde
  • A. Ross
  • M. Rott
  • M. Rubel
  • D. Ryan
  • F. Ryter
  • S. Saarelma
  • M. Salewski
  • A. Salmi
  • L. Sanchis-Sanchez
  • J. Santos
  • O. Sauter
  • A. Scarabosio
  • G. Schall
  • K. Schmid
  • O. Schmitz
  • P. A. Schneider
  • R. Schrittwieser
  • M. Schubert
  • T. Schwarz-Selinger
  • J. Schweinzer
  • B. Scott
  • T. Sehmer
  • E. Seliunin
  • M. Sertoli
  • A. Shabbir
  • A. Shalpegin
  • L. Shao
  • S. Sharapov
  • G. Sias
  • M. Siccinio
  • B. Sieglin
  • A. Sigalov
  • A. Silva
  • C. Silva
  • D. Silvagni
  • P. Simon
  • E. Smigelskis
  • C. Sommariva
  • C. Sozzi
  • M. Spolaore
  • A. Stegmeir
  • M. Stejner
  • J. Stober
  • U. Stroth
  • E. Strumberger
  • G. Suarez
  • H. J. Sun
  • W. Suttrop
  • E. Sytova
  • T. Szepesi
  • B. Tál
  • T. Tala
  • G. Tardini
  • M. Tardocchi
  • M. Teschke
  • D. Terranova
  • W. Tierens
  • E. Thorén
  • D. Told
  • P. Tolias
  • O. Tudisco
  • W. Treutterer
  • E. Trier
  • M. Tripský
  • M. Valisa
  • M. Valovic
  • B. Vanovac
  • D. Van Vugt
  • S. Varoutis
  • G. Verdoolaege
  • N. Vianello
  • J. Vicente
  • T. Vierle
  • E. Viezzer
  • U. Von Toussaint
  • D. Wagner
  • N. Wang
  • X. Wang
  • M. Weiland
  • A. E. White
  • S. Wiesen
  • M. Willensdorfer
  • B. Wiringer
  • M. Wischmeier
  • R. Wolf
  • E. Wolfrum
  • L. Xiang
  • Q. Yang
  • Z. Yang
  • Q. Yu
  • R. Zagórski
  • I. Zammuto
  • W. Zhang
  • M. Van Zeeland
  • T. Zehetbauer
  • M. Zilker
  • S. Zoletnik
  • H. Zohm

Research units

  • Max-Planck-Institut für Plasmaphysik
  • Graz University of Technology
  • DIFFER Dutch Institute for Fundamental Energy Research
  • University of Lisbon
  • Technische Universitat München
  • Eindhoven University of Technology
  • CNR
  • Princeton University
  • CEA
  • Forschungszentrum Jülich
  • Université de Lorraine
  • CNRS
  • CIEMAT
  • Agenzia nazionale per le nuove tecnologie, l'energia e lo sviluppo economico sostenibile
  • University of Warwick
  • EPFL Valais Wallis
  • University of Innsbruck
  • University of Wisconsin-Madison
  • Massachusetts Institute of Technology
  • Hungarian Academy of Sciences
  • Soltan Institute for Nuclear Studies
  • University of York
  • Karlsruhe Institute of Technology
  • KTH Royal Institute of Technology
  • University of Seville
  • University of Milan - Bicocca
  • VTT Technical Research Centre of Finland
  • Vienna University of Technology
  • Max-Planck Computing and Data Facility
  • General Atomics
  • ComUE Paris-Saclay
  • Institut für Grenzflachenverfahrenstechnik und Plasmatechnologie
  • Danmarks Tekniske Universitet
  • Budapest University of Technology and Economics
  • Polish Academy of Sciences
  • Czech Academy of Sciences
  • National Science Center Kharkov Institute of Physics and Technology
  • Royal Military Academy
  • Ghent University
  • ITER
  • Culham Science Centre
  • University of California at Davis
  • Polytechnic University of Turin
  • Barcelona Supercomputing Center
  • ICREA
  • University College Cork
  • Technische Universitat München
  • Chalmers University of Technology
  • University of Cagliari
  • CAS - Institute of Plasma Physics
  • EUROfusion
  • Culham Science Centre
  • ITER Organisation

Abstract

The ASDEX Upgrade (AUG) programme, jointly run with the EUROfusion MST1 task force, continues to significantly enhance the physics base of ITER and DEMO. Here, the full tungsten wall is a key asset for extrapolating to future devices. The high overall heating power, flexible heating mix and comprehensive diagnostic set allows studies ranging from mimicking the scrape-off-layer and divertor conditions of ITER and DEMO at high density to fully non-inductive operation (q 95 = 5.5, ) at low density. Higher installed electron cyclotron resonance heating power 6 MW, new diagnostics and improved analysis techniques have further enhanced the capabilities of AUG. Stable high-density H-modes with MW m-1 with fully detached strike-points have been demonstrated. The ballooning instability close to the separatrix has been identified as a potential cause leading to the H-mode density limit and is also found to play an important role for the access to small edge-localized modes (ELMs). Density limit disruptions have been successfully avoided using a path-oriented approach to disruption handling and progress has been made in understanding the dissipation and avoidance of runaway electron beams. ELM suppression with resonant magnetic perturbations is now routinely achieved reaching transiently . This gives new insight into the field penetration physics, in particular with respect to plasma flows. Modelling agrees well with plasma response measurements and a helically localised ballooning structure observed prior to the ELM is evidence for the changed edge stability due to the magnetic perturbations. The impact of 3D perturbations on heat load patterns and fast-ion losses have been further elaborated. Progress has also been made in understanding the ELM cycle itself. Here, new fast measurements of and E r allow for inter ELM transport analysis confirming that E r is dominated by the diamagnetic term even for fast timescales. New analysis techniques allow detailed comparison of the ELM crash and are in good agreement with nonlinear MHD modelling. The observation of accelerated ions during the ELM crash can be seen as evidence for the reconnection during the ELM. As type-I ELMs (even mitigated) are likely not a viable operational regime in DEMO studies of 'natural' no ELM regimes have been extended. Stable I-modes up to have been characterised using -feedback. Core physics has been advanced by more detailed characterisation of the turbulence with new measurements such as the eddy tilt angle - measured for the first time - or the cross-phase angle of and fluctuations. These new data put strong constraints on gyro-kinetic turbulence modelling. In addition, carefully executed studies in different main species (H, D and He) and with different heating mixes highlight the importance of the collisional energy exchange for interpreting energy confinement. A new regime with a hollow profile now gives access to regimes mimicking aspects of burning plasma conditions and lead to nonlinear interactions of energetic particle modes despite the sub-Alfvénic beam energy. This will help to validate the fast-ion codes for predicting ITER and DEMO.

Details

Original languageEnglish
Article number112014
Number of pages21
JournalNuclear Fusion
Volume59
Issue number11
Publication statusPublished - 22 Jul 2019
MoE publication typeA2 Review article in a scientific journal

    Research areas

  • DEMO, ITER, magnetic confinement, nuclear fusion, tokamak physics

ID: 38419685