Ordered water layers by interfacial charge decoration leading to an ultra-low Kapitza resistance between graphene and water

Research output: Contribution to journalArticleScientificpeer-review


  • Yali Ma
  • Zhongwei Zhang
  • Jige Chen
  • Kimmo Sääskilahti
  • Sebastian Volz
  • Jie Chen

Research units

  • Tongji University
  • Chinese Academy of Sciences
  • Swiss Federal Institute of Technology Zurich
  • CentraleSupélec
  • University of Tokyo


Heat transfer across solid-liquid interface is attracting increasing attention due to its importance in many chemical and biological applications. By using molecular dynamics simulations, we investigate the impact of interfacial charge decoration on the Kapitza resistance between graphene and water. Upon diagonal charge decoration on the interfacial graphene sheets, we find that the Kapitza resistance can be substantially reduced by up to 97% compared to the case without charge decoration. The ultra-low Kapitza resistance is partly caused by the enhancement of interfacial interaction strength via the Coulombic force between the charged graphene sheets and water. Remarkably, by analyzing the radial distribution function and the structure factor profile, we discover that the existence of an ordered water layer adjacent to the charge-decorated interface is another importance cause for the significantly reduced Kapitza resistance. Different patterns of charge decorations and spectral thermal properties are also discussed. Our study suggests that the interfacial charge decoration is an efficient approach to regulate the thermal transport across solid-liquid interface.


Original languageEnglish
Pages (from-to)263-269
Number of pages7
Publication statusPublished - 1 Aug 2018
MoE publication typeA1 Journal article-refereed

    Research areas

  • Few-layer graphene, Kapitza resistance, Molecular dynamics simulation, Ordered structure of water, Spectral interfacial thermal conductance

ID: 26408900