Optimizing the Voce–Chaboche Model Parameters for Fatigue Life Estimation of Welded Joints in High-Strength Marine Structures

Alice Petry*, Pasquale Gallo, Heikki Remes, Ari Niemelä

*Corresponding author for this work

Research output: Contribution to journalArticleScientificpeer-review

11 Citations (Scopus)
103 Downloads (Pure)

Abstract

This work studies the Voce–Chaboche (V–C) material model parameter optimization for high-strength steel welded joints subjected to cyclic loading. The model parameters of each material zone in a S690 steel butt-welded joint were determined using an optimization algorithm based on the Newton trust region (NTR) method and an accumulated true strain parameter. The model parameters were fitted to stress–strain histories from uniaxial strain-controlled cyclic tests. To validate the model, fully-reversed variable amplitude fatigue experiments were performed under load control. The experimental results were then compared to numerical results from a finite element analysis. When the elastic modulus is optimized as a V–C parameter, the results indicate that the V–C model slightly underestimates the strain range, leading to conservative fatigue life estimates. However, the results can be improved by using an elastic modulus obtained experimentally. In this case, the resulting material model slightly overestimates the strain range, leading to a non-conservative, but more accurate, fatigue life estimation. It can be concluded that the NTR-based accumulated true strain approach successfully determined the V–C model parameters for different material zones in the welded joint, and closely estimated the strain range and the fatigue life for a variable amplitude load history.
Original languageEnglish
Pages (from-to)818
Number of pages20
JournalJournal of Marine Science and Engineering
Volume10
Issue number6
DOIs
Publication statusPublished - 14 Jun 2022
MoE publication typeA1 Journal article-refereed

Keywords

  • voce-chaboche
  • welded joints
  • high-strength steels
  • fatigue life
  • marine structures
  • cyclic plasticity

Fingerprint

Dive into the research topics of 'Optimizing the Voce–Chaboche Model Parameters for Fatigue Life Estimation of Welded Joints in High-Strength Marine Structures'. Together they form a unique fingerprint.

Cite this