Abstract
Heat emitters, as the primary devices used in space heating, cover a fundamental role in the energy efficient use of buildings. In the search for an optimized design, heating devices should be compared with a benchmark emitter with maximum heat emission efficiency. However, such an ideal heater still needs to be defined. In this paper we perform an analysis of heat transfer in a European reference room, considering surface effects of thermal radiation and computing the induced operative temperature (op.t.) both analytically and numerically. Our ideal heater is the one determining the highest op.t. By means of functional optimization, we analyse trends such as the variation of operative temperature with radiator panel dimensions, finding optimal configurations. To make our definitions as general as possible, we address panel radiators, convectors, underfloor (UFH) and ceiling heater. We obtain analytical formulas for the operative temperature induced by panel radiators and identify the 10-type as our ideal radiator, while the UFH provides the best performance overall. Regarding specifically UFH and ceiling heaters, we find optimal sizes providing maximum op.t. The analytical method and qualitative results reported in this paper can be generalized and adopted in most studies concerning the efficiency of different heat emitter types in building enclosures.
Original language | English |
---|---|
Article number | 2477 |
Number of pages | 22 |
Journal | Applied Sciences (Switzerland) |
Volume | 8 |
Issue number | 12 |
DOIs | |
Publication status | Published - 3 Dec 2018 |
MoE publication type | A1 Journal article-refereed |
Keywords
- Analytical model
- Computer simulations
- Energy
- Operative temperature
- Radiator efficiency