Optimization of Proprioceptive Stimulation Frequency and Movement Range for fMRI

Research output: Contribution to journalArticleScientificpeer-review

1 Citation (Scopus)
121 Downloads (Pure)


For vision, audition and tactile sense, the optimal stimulus frequency for fMRI is somewhat known. For proprioception, i.e., the “movement sense”, however, the optimal frequency is unknown. We studied the effect of passive-finger-movement frequency on proprioceptive fMRI responses using a novel pneumatic-movement actuator. Eleven healthy right-handed volunteers participated in the study. The movement actuator passively moved the participant’s right index finger at frequencies of 0.3, 1, 3, 6, 9, or 12 Hz in a blocked design. A functional localizer was used to define regions-of-interest in SI and SII cortices. In addition, effect of movement range on the fMRI responses was tested in a separate session with 1, 3, 5, and 7 mm movement ranges at a fixed 2 Hz frequency. In primary somatosensory (SI) cortex, the responses were stronger at 3 Hz than at 0.3 Hz (p < 0.001) or 1 Hz (p < 0.05), and at ≥6 Hz than 0.3 Hz (p < 0.001 for frequencies ≥ 6 Hz). In secondary somatosensory (SII) cortex, all movements, except at 0.3 Hz, elicited significant responses of similar strength. In addition, 6, 9, and 12-Hz movements elicited a significant offset response in both SI and SII cortices (p < 0.001–0.05). SI cortex required a total stimulation duration of 4 min to elicit significant activations at the group-level whereas for SII cortex 1 min 20 s was sufficient. Increase in the movement range led to stronger responses in SI cortex, but not in SII cortex. Movements above 3 Hz elicited the strongest SI cortex responses, and increase in the movement range enhanced the response strength. We thus recommend that movements at 3–6 Hz with a movement range of 5 mm or higher to be used in future studies of proprioception. Our results are in-line with previous fMRI and PET studies using tactile or median nerve stimulation at different stimulation frequencies.
Original languageEnglish
Article number477
Pages (from-to)1-15
Number of pages15
Publication statusPublished - 3 Dec 2018
MoE publication typeA1 Journal article-refereed


  • kinesthesia
  • passive movement
  • proprioception
  • somatosensory cortex
  • repetition rate
  • sensorimotor system
  • fMRI
  • movement range

Fingerprint Dive into the research topics of 'Optimization of Proprioceptive Stimulation Frequency and Movement Range for fMRI'. Together they form a unique fingerprint.

  • Equipment

  • Science-IT

    Mikko Hakala (Manager)

    School of Science

    Facility/equipment: Facility

  • Cite this