Optimal and rule-based control strategies for energy flexibility in buildings with PV

Jyri Salpakari*, Peter Lund

*Corresponding author for this work

Research output: Contribution to journalArticleScientificpeer-review

93 Citations (Scopus)
433 Downloads (Pure)

Abstract

PV installations in buildings can utilize different on-site flexibility resources to balance mismatch in electricity production and demand. This paper studies cost-optimal and rule-based control for buildings with PV, employing a heat pump, thermal and electrical storage and shiftable loads as flexibility sources to increase the value of PV for the prosumer. The cost-optimal control minimizes variable electricity cost employing market data on electricity price and optionally constrains grid feed-in to zero; the rule-based control aims at maximizing PV self-consumption. The flexibility strategies are combined into a simulation model to analyze different system configurations over a full year.

The applicability of the new model is demonstrated with a case study with empirical data from a real low-energy house in Southern Finland. Compared to inflexible reference control with a constant price for bought electricity, cost-optimal control employing hourly market price of electricity achieved 13-25% savings in the yearly electricity bill. Moreover, 8-88% decrease in electricity fed into the grid was obtained. The exact values depend on PV capacity and the flexibility options chosen. Limiting grid feed-in to zero led to less energy efficient control. The most effective flexibility measures in this case turned out to be thermal storage with a heat pump and a battery, whereas shiftable appliances showed only a marginal effect. (C) 2015 Elsevier Ltd. All rights reserved.

Original languageEnglish
Pages (from-to)425-436
Number of pages12
JournalApplied Energy
Volume161
DOIs
Publication statusPublished - 1 Jan 2016
MoE publication typeA1 Journal article-refereed

Keywords

  • Photovoltaics
  • Intelligent building
  • Demand side management
  • Prosumer
  • Energy storage
  • System control
  • DEMAND-SIDE MANAGEMENT
  • PHOTOVOLTAIC SELF-CONSUMPTION
  • RENEWABLE ELECTRICITY
  • URBAN AREAS
  • HEAT-PUMPS
  • SYSTEM
  • POWER
  • STORAGE
  • INTEGRATION
  • IMPACT

Cite this