One-dimensional van der Waals heterostructures

Rong Xiang, Taiki Inoue, Yongjia Zheng, Akihito Kumamoto, Yang Qian, Yuta Sato, Ming Liu, Daiming Tang, Devashish Gokhale, Jia Guo, Kaoru Hisama, Satoshi Yotsumoto, Tatsuro Ogamoto, Hayato Arai, Yu Kobayashi, Hao Zhang, Bo Hou, Anton Anisimov, Mina Maruyama, Yasumitsu MiyataSusumu Okada, Shohei Chiashi, Yan Li, Jing Kong, Esko I. Kauppinen, Yuichi Ikuhara, Kazu Suenaga, Shigeo Maruyama*

*Corresponding author for this work

Research output: Contribution to journalArticleScientificpeer-review

50 Citations (Scopus)


We present the experimental synthesis of one-dimensional (1D) van der Waals heterostructures, a class of materials where different atomic layers are coaxially stacked. We demonstrate the growth of single-crystal layers of hexagonal boron nitride (BN) and molybdenum disulfide (MoS2) crystals on single-walled carbon nanotubes (SWCNTs). For the latter, larger-diameter nanotubes that overcome strain effect were more readily synthesized. We also report a 5-nanometer-diameter heterostructure consisting of an inner SWCNT, a middle three-layer BN nanotube, and an outer MoS2 nanotube. Electron diffraction verifies that all shells in the heterostructures are single crystals. This work suggests that all of the materials in the current 2D library could be rolled into their 1D counterparts and a plethora of function-designable 1D heterostructures could be realized.

Original languageEnglish
Pages (from-to)537-542
Number of pages6
Issue number6477
Publication statusPublished - 31 Jan 2020
MoE publication typeA1 Journal article-refereed


Dive into the research topics of 'One-dimensional van der Waals heterostructures'. Together they form a unique fingerprint.

Cite this