On the Colloidal Behavior of Cellulose Nanocrystals as a Hydrophobization Reagent for Mineral Particles

Robert Hartmann, Tommi Rinne, Rodrigo Serna-Guerrero*

*Corresponding author for this work

Research output: Contribution to journalArticleScientificpeer-review

12 Downloads (Pure)

Abstract

In the search for more sustainable alternatives to the chemical reagents currently used in froth flotation, the present work offers further insights into the behavior of functionalized cellulose nanocrystals as mineral hydrophobization agents. The study corroborates that hexylamine cellulose nanocrystals (HACs) are an efficient collector for the flotation of quartz and also identifies some particular characteristics as a result of their colloidal nature, as opposed to the water-soluble reagents conventionally used. To investigate the individual and collective effects of the frother and HACs on the attachment of particles and air bubbles, an automated contact timer apparatus was used. This induction timer measures particle-bubble attachment probabilities (Patt) without the influence of macroscopic factors present in typical flotation experiments. This allowed the study of the combined influence of nanocellulose and frother concentration on Patt for the first time. While HACs readily adsorb on quartz modifying its wettability, the presence of a frother leads to a drastic reduction in Patt up to 70%. The improved recovery of quartz in flotation cells might thus be attributed to froth stabilization by HACs, perhaps acting as a Pickering foam stabilizer. Among the main findings, a tendency of HACs to form mineral agglomerates was identified and further explained using the extended DLVO theory in combination with measured adsorption rates in a quartz crystal microbalance. Therefore, this study distinguishes for the first time the antagonistic effect of frothers on Patt and their synergies with HACs on the stabilization of orthokinetic froths through the hydrophobization mechanism unlike those of typical water-soluble collectors.

Original languageEnglish
Pages (from-to)2322-2333
Number of pages12
JournalLangmuir
Volume37
Issue number7
Early online date5 Feb 2021
DOIs
Publication statusPublished - 23 Feb 2021
MoE publication typeA1 Journal article-refereed

Fingerprint

Dive into the research topics of 'On the Colloidal Behavior of Cellulose Nanocrystals as a Hydrophobization Reagent for Mineral Particles'. Together they form a unique fingerprint.

Cite this