Projects per year
Abstract
In this paper, we illustrate how convolutional neural networks and voxel-based processing together with voxel visualizations can be utilized for the selection of unaimed images for a photogrammetric image block. Our research included the detection of an ear from images with a convolutional neural network, computation of image orientations with a structure-from-motion algorithm, visualization of camera locations in a voxel representation to detect the goodness of the imaging geometry, rejection of unnecessary images with an XYZ buffer, the creation of 3D models in two different example cases, and the comparison of resulting 3D models. Two test data sets were taken of an ear with the video recorder of a mobile phone. In the first test case, a special emphasis was taken to ensure good imaging geometry. On the contrary, in the second test case the trajectory was limited to approximately horizontal movement, leading to poor imaging geometry. A convolutional neural network together with an XYZ buffer managed to select a useful set of images for the photogrammetric 3D measuring phase. The voxel representation well illustrated the imaging geometry and has potential for early detection where data is suitable for photogrammetric modelling. The comparison of 3D models revealed that the model from poor imaging geometry was noisy and flattened. The results emphasize the importance of good imaging geometry.
Original language | English |
---|---|
Pages (from-to) | 389-394 |
Number of pages | 6 |
Journal | ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences |
Volume | 5 |
Issue number | 2 |
DOIs | |
Publication status | Published - 3 Aug 2020 |
MoE publication type | A4 Conference publication |
Event | ISPRS Congress - Technical Commission I - Virtual, Nice, France Duration: 31 Aug 2020 → 2 Sept 2020 Conference number: 24 |
Keywords
- convolutional neural network
- imaging geometry
- object detection
- structure-from-motion
- unaimed video
- voxel
Fingerprint
Dive into the research topics of 'On Selecting Images from An Unaimed Video Stream for Photogrammetric Modelling'. Together they form a unique fingerprint.Projects
- 2 Finished
-
COMBAT: Competence-Based Growth Through Integrated Disruptive Technologies of 3D Digitalization, Robotics, Geospatial Information and Image Processing/Computing - Point Cloud Ecosystem
Nieminen, J., Ahlavuo, M., Vaaja, M. T., Laitala, A., Julin, A., Hyyppä, H., Maksimainen, M., Lehtola, V., Ståhle, P., Haggren, H., Rantanen, T., Gullmets, H., Kauhanen, H., Jaalama, K., Ingman, M., Karvonen, S., Kurkela, M., Luhtala, L. & Virtanen, J.
01/05/2015 → 31/12/2017
Project: Academy of Finland: Strategic research funding
-
CoE - LaSR: Centre of Excellence in Laser Scanning Research
Nieminen, J., Vaaja, M. T., Laitala, A., Julin, A., Maksimainen, M., Hyyppä, H., Rönnholm, P., Junttila, S., Puustinen, T., Haggren, H., Ala-Ketola, M., Lehtola, V., Aho, S., Ståhle, P., Kasvi, E., Kurkela, M., Ingman, M., Rantanen, T., Torkkel, A., Jaalama, K., Talvela, J., Handolin, H., Ahlavuo, M., El-Mahgary, S., Viitanen, K. & Virtanen, J.
01/01/2014 → 31/12/2019
Project: Academy of Finland: Other research funding
Equipment
-
-
i3 – Industry Innovation Infrastructure
Panu Sainio (Manager)
School of EngineeringFacility/equipment: Facility