On-line Bayesian parameter estimation in electrocardiogram state space models

Kimmo Suotsalo, Simo Särkkä

Research output: Chapter in Book/Report/Conference proceedingConference contributionScientificpeer-review

Abstract

This paper proposes a Bayesian approach to parameter estimation in electrocardiogram state space models. The on-line nature of the proposed method allows it to be applied to real-world electrocardiogram recordings with varying beat morphology, heart rate, and noise; it thereby provides clear advantages over the conventional Gaussian kernel approach. The applicability of the proposed method is demonstrated on benchmark electrocardiogram data. The results indicate that the method provides a promising framework for noise reduction and wave delineation in electrocardiograms.

Original languageEnglish
Title of host publication2018 IEEE International Workshop on Machine Learning for Signal Processing, MLSP 2018 - Proceedings
EditorsNelly Pustelnik, Zheng-Hua Tan, Zhanyu Ma, Jan Larsen
PublisherIEEE
Volume2018-September
ISBN (Electronic)9781538654774
DOIs
Publication statusPublished - 31 Oct 2018
MoE publication typeA4 Conference publication
EventIEEE International Workshop on Machine Learning for Signal Processing - Aalborg, Denmark
Duration: 17 Sept 201820 Sept 2018
Conference number: 28

Publication series

NameIEEE International Workshop on Machine Learning for Signal Processing
PublisherIEEE
ISSN (Print)2161-0363
ISSN (Electronic)2161-0371

Workshop

WorkshopIEEE International Workshop on Machine Learning for Signal Processing
Abbreviated titleMLSP
Country/TerritoryDenmark
CityAalborg
Period17/09/201820/09/2018

Keywords

  • Bayesian filtering
  • Electrocardiography
  • Parameter estimation
  • State space model
  • Wave delineation

Fingerprint

Dive into the research topics of 'On-line Bayesian parameter estimation in electrocardiogram state space models'. Together they form a unique fingerprint.

Cite this