Projects per year
Abstract
Superconducting spintronics is based on the creation of spin-triplet Cooper pairs in ferromagnet-superconductor (F-S) hybrid junctions. Previous proposals to manipulate spin-polarized supercurrents on demand typically require the ability to carefully control magnetic materials. We, instead, propose a quantum heat engine that generates equal-spin Cooper pairs and drives supercurrents on demand without manipulating magnetic components. We consider a S-F-S junction, connecting two leads at different temperatures, on top of the helical edge of a two-dimensional topological insulator. Heat and charge currents generated by the thermal bias are caused by different transport processes, where electron cotunneling is responsible for the heat flow to the cold lead and, strikingly, only crossed Andreev reflections contribute to the charge current. Such a purely nonlocal Andreev thermoelectric effect injects spin-polarized Cooper pairs at the superconductors, generating a supercurrent that can be switched on-off by tuning their relative phase. We further demonstrate that signatures of spin-triplet pairing are facilitated by rather low fluctuations of the thermoelectric current for temperature gradients smaller than the superconducting gap.
Original language | English |
---|---|
Article number | 022019 |
Number of pages | 7 |
Journal | PHYSICAL REVIEW RESEARCH |
Volume | 2 |
Issue number | 2 |
DOIs | |
Publication status | Published - 28 Apr 2020 |
MoE publication type | A1 Journal article-refereed |
Keywords
- MESOSCOPIC SYSTEMS
- SUPERCURRENTS
- TRANSPORT
- FORMULA
- STATE
- NOISE
Fingerprint
Dive into the research topics of 'On-demand thermoelectric generation of equal-spin Cooper pairs'. Together they form a unique fingerprint.Projects
- 2 Finished
-
Finnish Centre of Excellence in Quantum Technology
Flindt, C. (Principal investigator), Potanina, E. (Project Member), Burset Atienza, P. (Project Member) & Pyhäranta, T. (Project Member)
01/01/2018 → 31/12/2020
Project: Academy of Finland: Other research funding
-
DIRACENTANGLER: Cooper pair splitter based on Dirac materials
Flindt, C. (Principal investigator) & Burset Atienza, P. (Project Member)
01/04/2017 → 31/03/2019
Project: EU: Framework programmes funding