Projects per year
Abstract
Liquid-repellent surfaces, especially smooth solid surfaces with covalently grafted flexible polymer brushes or alkyl monolayers, are the focus of an expanding research area. Surface-tethered flexible species are highly mobile at room temperature, giving solid surfaces a unique liquid-like quality and unprecedented dynamical repellency towards various liquids regardless of their surface tension. Omniphobic liquid-like surfaces (LLSs) are a promising alternative to air-mediated superhydrophobic or superoleophobic surfaces and lubricant-mediated slippery surfaces, avoiding fabrication complexity and air/lubricant loss issues. More importantly, the liquid-like molecular layer controls many important interface properties, such as slip, friction and adhesion, which may enable novel functions and applications that are inaccessible with conventional solid coatings. In this Review, we introduce LLSs and their inherent dynamic omniphobic mechanisms. Particular emphasis is given to the fundamental principles of surface design and the consequences of the liquid-like nature for task-specific applications. We also provide an overview of the key challenges and opportunities for omniphobic LLSs. [Figure not available: see fulltext.]
Original language | English |
---|---|
Pages (from-to) | 123-137 |
Number of pages | 15 |
Journal | Nature Reviews : Chemistry |
Volume | 7 |
Issue number | 2 |
Early online date | 9 Jan 2023 |
DOIs | |
Publication status | Published - Feb 2023 |
MoE publication type | A2 Review article, Literature review, Systematic review |
Fingerprint
Dive into the research topics of 'Omniphobic liquid-like surfaces'. Together they form a unique fingerprint.-
PULSUR: Pulsating Surfaces
Ras, R. (Principal investigator), Lepikko, S. (Project Member), Karunakaran, B. (Project Member), Wong, W. (Project Member), Hartikka, A. (Project Member), Fieber, L. (Project Member) & Khan, R. (Project Member)
01/09/2021 → 31/08/2025
Project: Academy of Finland: Other research funding
-
-: Center of Excellence in Life-inspired Hybrid Materials
Ras, R. (Principal investigator), Al-Terke, H. (Project Member), Junaid, M. (Project Member), Nurmi, H. (Project Member), Liu, K. (Project Member), Zhou, S. (Project Member), Morais Jaques, Y. (Project Member), Huhtamäki, T. (Project Member), Wagener, L. Z. J. S. (Project Member), Vuckovac, M. (Project Member), Lepikko, S. (Project Member) & Afzalifar, A. (Project Member)
01/01/2022 → 31/12/2024
Project: Academy of Finland: Other research funding
-
SuperRepel: Superslippery Liquid-Repellent Surfaces
Ras, R. (Principal investigator), Yu, C. (Project Member), Huhtamäki, T. (Project Member), Junaid, M. (Project Member), Lepikko, S. (Project Member), Liu, K. (Project Member), Vuckovac, M. (Project Member) & Hokkanen, M. (Project Member)
01/06/2017 → 31/05/2022
Project: EU: ERC grants