Projects per year
Abstract
We experimentally study nanoscale normal-metal-insulator-superconductor junctions coupled to a superconducting microwave resonator. We observe that bias-voltage-controllable single-electron tunneling through the junctions gives rise to a direct conversion between the electrostatic energy and that of microwave photons. The measured power spectral density of the microwave radiation emitted by the resonator exceeds at high bias voltages that of an equivalent single-mode radiation source at 2.5 K although the phonon and electron reservoirs are at subkelvin temperatures. Measurements of the generated power quantitatively agree with a theoretical model in a wide range of bias voltages. Thus, we have developed a microwave source which is compatible with low-temperature electronics and offers convenient in-situ electrical control of the incoherent photon emission rate with a predetermined frequency, without relying on intrinsic voltage fluctuations of heated normal-metal components or suffering from unwanted losses in room temperature cables. Importantly, our observation of negative generated power at relatively low bias voltages provides a novel type of verification of the working principles of the recently discovered quantum-circuit refrigerator.
Original language | English |
---|---|
Article number | 3966 |
Pages (from-to) | 1-8 |
Journal | Scientific Reports |
Volume | 8 |
Issue number | 1 |
DOIs | |
Publication status | Published - 1 Dec 2018 |
MoE publication type | A1 Journal article-refereed |
Fingerprint
Dive into the research topics of 'Observation of microwave absorption and emission from incoherent electron tunneling through a normal-metal-insulator-superconductor junction'. Together they form a unique fingerprint.Projects
- 1 Finished
-
QUESS - Quantum Environment Engineering for Steered Systems
Möttönen, M., Abuzaid, O., Partanen, M., Keränen, A., Tiurev, K., Blanchet, F., Girard, J., Ikonen, J., Mäkinen, A., Tuohino, S., Tuorila, J., Mörstedt, T., Ma, J., Oinonen, N., Sah, A., Kohvakka, K., Silveri, M., Gunyho, A. & Kivijärvi, H.
23/12/2016 → 31/12/2021
Project: EU: ERC grants