Nitrogen Recovery from Landfill Leachate Using Lab- and Pilot-Scale Membrane Contactors : Research into Fouling Development and Membrane Characterization Effects

Ilaria Righetto, Raed A. Al-Juboori*, Juho Uzkurt Kaljunen, Ngoc Huynh, Anna Mikola

*Corresponding author for this work

Research output: Contribution to journalArticleScientificpeer-review

7 Citations (Scopus)
114 Downloads (Pure)

Abstract

Membrane contactor technology affords great opportunities for nitrogen recovery from waste streams. This study presents a performance comparison between lab- and pilot-scale membrane contactors using landfill leachate samples. Polypropylene (PP) and polytetrafluoroethylene (PTFE) fibers in different dimensions were compared in terms of ammonia (NH3) recovery on a lab scale using a synthetic ammonium solution. The effect of pre-treating the leachate with tannin coagulation on nitrogen recovery was also evaluated. An ammonia transfer on the lab and pilot scale was scrutinized using landfill leachate as a feed solution. It was found that PTFE fibers performed better than PP fibers. Among PTFE fibers, the most porous one (denoted as M1) had the highest NH3 flux of 19.2 g/m2.h. Tannin pre-treatment reduced fouling and increased NH3, which in turn improved nitrogen recovery. The mass transfer coefficient of the lab-scale reactor was more than double that of the pilot reactor (1.80 × 10−7 m/s vs. 4.45 × 10−7 m/s). This was likely attributed to the difference in reactor design. An analysis of the membrane surface showed that the landfill leachate caused a combination of inorganic and organic fouling. Cleaning with UV and 0.01 M H2O2 was capable of removing the fouling completely and restoring the membrane characteristics.

Original languageEnglish
Article number837
Number of pages17
JournalMembranes
Volume12
Issue number9
DOIs
Publication statusPublished - Sept 2022
MoE publication typeA1 Journal article-refereed

Keywords

  • ammonia transfer rate
  • landfill leachate
  • membrane contactor
  • membrane fouling
  • nutrient recovery
  • tannins

Fingerprint

Dive into the research topics of 'Nitrogen Recovery from Landfill Leachate Using Lab- and Pilot-Scale Membrane Contactors : Research into Fouling Development and Membrane Characterization Effects'. Together they form a unique fingerprint.

Cite this