Niobium doping induced mirror twin boundaries in MBE grown WSe2 monolayers

Bo Wang, Yipu Xia, Junqiu Zhang, Hannu Pekka Komsa, Maohai Xie, Yong Peng, Chuanhong Jin*

*Corresponding author for this work

Research output: Contribution to journalArticleScientificpeer-review

1 Citation (Scopus)

Abstract

Mirror twin boundary (MTB) brings unique one-dimensional (1D) physics and properties into two-dimensional (2D) transition metal dichalcogenides (TMDCs), but they were rarely observed in non-Mo-based TMDCs. Herein, by post-growth Nb doping, high density 4|4E-W and 4|4P-Se mirror twin boundaries (MTBs) were introduced into molecular beam epitaxy (MBE) grown WSe2 monolayers. Of them, 4|4E-W MTB with a novel structure was discovered experimentally for the first time, while 4|4P-Se MTBs present a random permutations of W and Nb, forming a 1D alloy system. Comparison between the doped and non-doped WSe2 confirmed that Nb dopants are essential for MTB formation. Furthermore, quantitative statistics reveal the areal density of MTBs is directly proportional to the concentration of Nb dopants. To unravel the injection pathway of Nb dopants, first-principles calculations about a set of formation energies for excess Nb atoms with different configurations were conducted, based on which a model explaining the origin of MTBs introduced by excess metal was built. We conclude that the formation of MTBs is mainly driven by the collective evolution of excess Nb atoms introduced into the lattice of host WSe2 crystal and subsequent displacement of metal atoms (W or Nb). This study provides a novel way to tailor the MTBs in 2D TMDC materials via proper metal doping and presents new opportunities for exploring the intriguing properties.

Original languageEnglish
JournalNano Research
DOIs
Publication statusE-pub ahead of print - 1 Jan 2020
MoE publication typeA1 Journal article-refereed

Keywords

  • mirror twin boundaries
  • molecular beam epitaxy
  • niobium
  • niobium doping
  • transition metal dichalcogenides
  • tungsten diselenide

Fingerprint Dive into the research topics of 'Niobium doping induced mirror twin boundaries in MBE grown WSe<sub>2</sub> monolayers'. Together they form a unique fingerprint.

Cite this