Abstract
A number of recent papers – e.g. Brandt et al. (STOC 2016), Chang et al. (FOCS 2016), Ghaffari & Su (SODA 2017), Brandt et al. (PODC 2017), and Chang & Pettie (FOCS 2017) – have advanced our understanding of one of the most fundamental questions in theory of distributed computing: what are the possible time complexity classes of LCL problems in the LOCAL model? In essence, we have a graph problem Π in which a solution can be verified by checking all radius-O(1) neighbourhoods, and the question is what is the smallest T such that a solution can be computed so that each node chooses its own output based on its radius-T neighbourhood. Here T is the distributed time complexity of Π.
The time complexity classes for deterministic algorithms in bounded-degree graphs that are known to exist by prior work are Θ(1), Θ(log∗ n), Θ(log n), Θ(n1/k), and Θ(n). It is also known that there are two gaps: one between ω(1) and o(log log∗ n), and another between ω(log∗ n) and o(log n). It has been conjectured that many more gaps exist, and that the overall time hierarchy is relatively simple – indeed, this is known to be the case in restricted graph families such as cycles and grids.
We show that the picture is much more diverse than previously expected. We present a general technique for engineering LCL problems with numerous different deterministic time complexities, including Θ(logα n) for any α ≥ 1, 2Θ(log^α n) for any α ≤ 1, and Θ(nα) for any α < 1/2 in the high end of the complexity spectrum, and Θ(logα log∗ n) for any α ≥ 1, 2Θ(log^α log^∗ n) for any α ≤ 1, and Θ((log∗ n)α) for any α ≤ 1 in the low end of the complexity spectrum; here α is a positive rational number.
Original language | English |
---|---|
Title of host publication | STOC 2018 – Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing |
Publisher | ACM |
Pages | 1307-1318 |
Number of pages | 12 |
ISBN (Electronic) | 9781450355599 |
DOIs | |
Publication status | Published - 20 Jun 2018 |
MoE publication type | A4 Conference publication |
Event | ACM Symposium on Theory of Computing - Los Angeles, United States Duration: 25 Jun 2018 → 29 Jun 2018 Conference number: 50 http://acm-stoc.org/stoc2018/ |
Conference
Conference | ACM Symposium on Theory of Computing |
---|---|
Abbreviated title | STOC |
Country/Territory | United States |
City | Los Angeles |
Period | 25/06/2018 → 29/06/2018 |
Internet address |
Keywords
- distributed complexity theory
- graph algorithms
- locally checkable labellings
- LOCAL model