Network traffic flow optimization under performance constraints

Alfréd Csikós, Themistoklis Charalambous, Hamed Farhadi, Balázs Kulcsár, Henk Wymeersch

Research output: Contribution to journalArticleScientificpeer-review

14 Citations (Scopus)


In this paper, a model-based perimeter control policy for large-scale urban vehicular networks is proposed. Assuming a homogeneously loaded vehicle network and the existence of a well-posed Network Fundamental Diagram (NFD), we describe a protected network throughout its aggregated dynamics including nonlinear exit flow characteristics. Within this framework of constrained optimal boundary flow gating, two main performance metrics are considered: (a) first, connected to the NFD, the concept of average network travel time and delay as a performance metric is defined; (b) second, at boundaries, we take into account additional external network queue dynamics governed by uncontrolled inflow demands. External queue capacities in terms of finite-link lengths are used as the second performance metric. Hence, the corresponding performance requirement is an upper bound of external queues. While external queues represent vehicles waiting to enter the protected network, internal queue describes the protected network's aggregated behavior. By controlling the number of vehicles joining the internal queue from the external ones, herewith a network traffic flow maximization solution subject to the internal and external dynamics and their performance constraints is developed. The originally non-convex optimization problem is transformed to a numerically efficiently convex one by relaxing the performance constraints into time-dependent state boundaries. The control solution can be interpreted as a mechanism which transforms the unknown arrival process governing the number of vehicles entering the network to a regulated process, such that prescribed performance requirements on travel time in the network and upper bound on the external queue are satisfied. Comparative numerical simulation studies on a microscopic traffic simulator are carried out to show the benefits of the proposed method.
Original languageEnglish
Pages (from-to)120-133
Number of pages14
JournalTransportation Research Part C: Emerging Technologies
Publication statusPublished - 1 Oct 2017
MoE publication typeA1 Journal article-refereed


  • Network fundamental diagram
  • Perimeter control
  • Traffic control
  • Traffic flow
  • Travel time

Fingerprint Dive into the research topics of 'Network traffic flow optimization under performance constraints'. Together they form a unique fingerprint.

Cite this