Nanosheet-templated graphene oxide membranes for fast molecule separation

Zhen Lin, Chuan Hu, Qinglin Liu, Qiugen Zhang*

*Corresponding author for this work

Research output: Contribution to journalArticleScientificpeer-review

Abstract

Intercalated laminar membrane with controllable interlayer spacing (d-spacing) is one of the most effective membranes for fast molecule separation. In this work, we demonstrate a versatile strategy to create nanosheet-templated water channels in laminar graphene oxide (GO) membranes. The 1.2 nm-thick nickel hydroxide nanosheets as sacrificed intercalators provide a chance to control the d-spacing. The resultant membranes have controllable channels and exhibit over six times higher water permeance than the unintercalated membrane. The 880 nm-thick nanosheet-templated GO (NST-GO) membrane has accurate d-spacing of about 1.14 nm and shows high water permeance of 120.3 L m−2 h−1 bar−1 and good molecule separation property, reflecting in high rejection for larger dyes (90.1% for erythrosine B [EB]), while low rejection for smaller dyes (58.3% for methylene blue [MB]). Furthermore, this strategy of intercalating and sacrificing nanosheets has higher potential than traditional intercalation in controlling d-spacing of laminar membranes.

Original languageEnglish
Article number17818
JournalAIChE Journal
Volume68
Issue number11
Early online date4 Jul 2022
DOIs
Publication statusPublished - Nov 2022
MoE publication typeA1 Journal article-refereed

Keywords

  • d-spacing control
  • laminar membrane
  • molecule separation
  • nanosheet-templated membrane
  • sacrificed intercalator

Fingerprint

Dive into the research topics of 'Nanosheet-templated graphene oxide membranes for fast molecule separation'. Together they form a unique fingerprint.

Cite this