Nanocrystalline surface layer of WO3 for enhanced proton transport during fuel cell operation

Xiang Song, Weiqing Guo, Yuhong Guo, Naveed Mushtaq*, M. A.K. Yousaf Shah, Muhammad Sultan Irshad, Peter D. Lund, Muhammad Imran Asghar

*Corresponding author for this work

Research output: Contribution to journalArticleScientificpeer-review

3 Citations (Scopus)
38 Downloads (Pure)


High ionic conductivity in low-cost semiconductor oxides is essential to develop electrochemical energy devices for practical applications. These materials exhibit fast protonic or oxygen-ion transport in oxide materials by structural doping, but their application to solid oxide fuel cells (SOFCs) has remained a significant challenge. In this work, we have successfully synthesized nanostructured monoclinic WO3 through three steps: co-precipitation, hydrothermal, and dry freezing methods. The resulting WO3 exhibited good ionic conductivity of 6.12 × 10−2 S cm−1 and reached an excellent power density of 418 mW cm−2 at 550C using as an electrolyte in SOFC. To achieve such a high ionic conductivity and fuel cell performance without any doping contents was surprising, as there should not be any possibility of oxygen vacancies through the bulk structure for the ionic transport. Therefore, laterally we found that the surface layer of WO3 is reduced to oxygen-deficient when exposed to a reducing atmosphere and form WO3−δ/WO3 heterostructure, which reveals a unique ionic transport mechanism. Different microscopic and spectroscopic methods such as HR-TEM, SEM, EIS, Raman, UV-visible, XPS, and ESR spectroscopy were applied to investigate the structural, morphological, and electrochemical properties of WO3 electrolyte. The structural stability of the WO3 is explained by less dispersion between the valence and conduction bands of WO3−δ/WO3, which in turn could prevent current leakage in the fuel cell that is essential to reach high performance. This work provides some new insights for designing high-ion conducting electrolyte materials for energy storage and conversion devices.

Original languageEnglish
Article number1595
Pages (from-to)1-12
Number of pages12
Issue number12
Publication statusPublished - Dec 2021
MoE publication typeA1 Journal article-refereed


  • Dry freezing method
  • Fuel cell
  • Monoclinic WO electrolyte
  • Proton conduction
  • Solid oxide fuel cell
  • Spectroscopic analysis


Dive into the research topics of 'Nanocrystalline surface layer of WO3 for enhanced proton transport during fuel cell operation'. Together they form a unique fingerprint.

Cite this