TY - JOUR
T1 - Multimessenger Characterization of Markarian 501 during Historically Low X-Ray and γ-Ray Activity
AU - Abe, H.
AU - Abe, S.
AU - Acciari, V. A.
AU - Agudo, I.
AU - Aniello, T.
AU - Ansoldi, S.
AU - Antonelli, L. A.
AU - Arbet-Engels, A.
AU - Arcaro, C.
AU - Artero, M.
AU - Asano, K.
AU - Baack, D.
AU - Babić, A.
AU - Baquero, A.
AU - De Almeida, U. Barres
AU - Barrio, J. A.
AU - Batković, I.
AU - Baxter, J.
AU - Becerra González, J.
AU - Bednarek, W.
AU - Bernardini, E.
AU - Bernardos, M.
AU - Berti, A.
AU - Besenrieder, J.
AU - Bhattacharyya, W.
AU - Bigongiari, C.
AU - Biland, A.
AU - Blanch, O.
AU - Bonnoli, G.
AU - Bošnjak, A.
AU - Burelli, I.
AU - Busetto, G.
AU - Carosi, R.
AU - Carretero-Castrillo, M.
AU - Castro-Tirado, A. J.
AU - Ceribella, G.
AU - Chai, Y.
AU - Chilingarian, A.
AU - Cikota, S.
AU - Colombo, E.
AU - Contreras, J. L.
AU - Cortina, J.
AU - Covino, S.
AU - D'Amico, G.
AU - D'Elia, V.
AU - Fallah Ramazani, V.
AU - Chamani, W.
AU - Hovatta, T.
AU - Lähteenmäki, A.
AU - Tornikoski, M.
AU - MAGIC Collaboration
N1 - Funding Information:
M.D.J. thanks the Brigham Young University Department of Physics and Astronomy for continued support of the ongoing extragalactic monitoring program at the West Mountain Observatory. S.K. acknowledges support from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation program under grant agreement No. 771282. This research has made use of data from the OVRO 40 m monitoring program (Richards, J. L. et al. 2011, ApJS, 194, 29), supported by private funding from the California Insitute of Technology and the Max-Planck Institute for Radio Astronomy, and by NASA grants NNX08AW31G, NNX11A043G, and NNX14AQ89G and NSF grants AST-0808050 and AST- 1109911. This publication makes use of data obtained at Metsähovi Radio Observatory, operated by Aalto University in Finland. The Medicina radio telescope is funded by the Italian Ministry of University and Research (MUR) and is operated as a National Facility by the Italian National Institute for Astrophysics (INAF). The Submillimeter Array is a joint project between the Smithsonian Astrophysical Observatory and the Academia Sinica Institute of Astronomy and Astrophysics and is funded by the Smithsonian Institution and the Academia Sinica. The RATAN-600 observations were supported by the Ministry of Science and Higher Education of the Russian Federation under the contract 075-15-2022-262.
Funding Information:
The research at Boston University was supported in part by NASA Fermi GI grants 80NSSC20K1567 and 80NSSC22K1571, National Science Foundation grant AST-2108622, and the NRAO Student Observing Support Program. This study was based (in part) on observations conducted using the 1.8 m Perkins Telescope Observatory (PTO) in Arizona (USA), which is owned and operated by Boston University. The VLBA is an instrument of the National Radio Astronomy Observatory, USA. The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc. The IAA-CSIC co-authors acknowledge financial support from the Spanish “Ministerio de Ciencia e Innovació” (MCINN) through the “Center of Excellence Severo Ochoa” award for the Instituto de Astrofísica de Andalucía-CSIC (SEV-2017-0709). Acquisition and reduction of the POLAMI data were supported in part by MICINN through grants AYA2016-80889-P and PID2019-107847RB-C44. The POLAMI observations were carried out at the IRAM 30 m Telescope. IRAM is supported by INSU/CNRS (France), MPG (Germany), and IGN (Spain). This publication makes use of data products from the Near-Earth Object Wide-field Infrared Survey Explorer (NEOWISE), which is a joint project of the Jet Propulsion Laboratory/California Institute of Technology and the University of Arizona. NEOWISE is funded by the National Aeronautics and Space Administration.
Funding Information:
We would like to thank the Instituto de Astrofísica de Canarias for the excellent working conditions at the Observatorio del Roque de los Muchachos in La Palma. The financial support of the German BMBF, MPG, and HGF; the Italian INFN and INAF; the Swiss National Fund (SNF); grants PID2019-104114RB-C31, PID2019-104114RB-C32, PID2019-104114RB-C33, PID2019-105510GB-C31, PID2019-107847RB-C41, PID2019-107847RB-C42, PID2019-107847RB-C44, and PID2019-107988GB-C22 funded by MCIN/AEI/10.13039/501100011033; the Indian Department of Atomic Energy; the Japanese ICRR, the University of Tokyo, JSPS, and the Ministry of Education, Culture, Sports, Science, and Technology (MEXT); the Bulgarian Ministry of Education and Science, National RI Roadmap Project DO1-400/18.12.2020; and the Academy of Finland grant No. 320045 is gratefully acknowledged. This work was also been supported by Centros de Excelencia “Severo Ochoa” y Unidades “María de Maeztu” program of the MCIN/AEI/10.13039/501100011033 (SEV-2016-0588, SEV-2017-0709, CEX2019-000920-S, CEX2019-000918-M, MDM-2015-0509-18-2) and by the CERCA institution of the Generalitat de Catalunya; by the Croatian Science Foundation (HrZZ) Project IP-2016-06-9782 and the University of Rijeka Project uniri-prirod-18-48; by the Deutsche Forschungsgemeinschaft (SFB1491 and SFB876); the Polish Ministry of Education and Science grant No. 2021/WK/08; and by the Brazilian MCTIC, CNPq, and FAPERJ. The Fermi-LAT Collaboration acknowledges generous ongoing support from a number of agencies and institutes that have supported both the development and the operation of the LAT as well as scientific data analysis. These include NASA and the Department of Energy in the United States; the Commissariat à l’Energie Atomique and the Centre National de la Recherche Scientifique/Institut National de Physique Nucléaire et de Physique des Particules in France; the Agenzia Spaziale Italiana and the Istituto Nazionale di Fisica Nucleare in Italy; MEXT, the High Energy Accelerator Research Organization (KEK), and the Japan Aerospace Exploration Agency (JAXA) in Japan; and the K. A. Wallenberg Foundation, the Swedish Research Council, and the Swedish National Space Board in Sweden. Additional support for science analysis during the operations phase is gratefully acknowledged from the Instituto Nazionale di Astrofisica in Italy and the Centre National d’Études Spatiales in France. This work performed in part under DOE Contract DE-AC02-76SF00515. This work made use of data from the NuSTAR mission. We thank the NuSTAR Operations, Software, and Calibration teams for support with the execution and analysis of these observations. This research has made use of the NuSTAR Data Analysis Software (NuSTARDAS) jointly developed by the ASI Science Data Center (ASDC; Italy) and the California Institute of Technology (USA).
Publisher Copyright:
© 2023. The Author(s). Published by the American Astronomical Society.
PY - 2023/6/1
Y1 - 2023/6/1
N2 - We study the broadband emission of Mrk 501 using multiwavelength observations from 2017 to 2020 performed with a multitude of instruments, involving, among others, MAGIC, Fermi's Large Area Telescope (LAT), NuSTAR, Swift, GASP-WEBT, and the Owens Valley Radio Observatory. Mrk 501 showed an extremely low broadband activity, which may help to unravel its baseline emission. Nonetheless, significant flux variations are detected at all wave bands, with the highest occurring at X-rays and very-high-energy (VHE) 3-rays. A significant correlation (>3σ) between X-rays and VHE 3-rays is measured, supporting leptonic scenarios to explain the variable parts of the emission, also during low activity. This is further supported when we extend our data from 2008 to 2020, and identify, for the first time, significant correlations between the Swift X-Ray Telescope and Fermi-LAT. We additionally find correlations between high-energy 3-rays and radio, with the radio lagging by more than 100 days, placing the 3-ray emission zone upstream of the radio-bright regions in the jet. Furthermore, Mrk 501 showed a historically low activity in X-rays and VHE 3-rays from mid-2017 to mid-2019 with a stable VHE flux (>0.2 TeV) of 5% the emission of the Crab Nebula. The broadband spectral energy distribution (SED) of this 2 yr long low state, the potential baseline emission of Mrk 501, can be characterized with one-zone leptonic models, and with (lepto)-hadronic models fulfilling neutrino flux constraints from IceCube. We explore the time evolution of the SED toward the low state, revealing that the stable baseline emission may be ascribed to a standing shock, and the variable emission to an additional expanding or traveling shock.
AB - We study the broadband emission of Mrk 501 using multiwavelength observations from 2017 to 2020 performed with a multitude of instruments, involving, among others, MAGIC, Fermi's Large Area Telescope (LAT), NuSTAR, Swift, GASP-WEBT, and the Owens Valley Radio Observatory. Mrk 501 showed an extremely low broadband activity, which may help to unravel its baseline emission. Nonetheless, significant flux variations are detected at all wave bands, with the highest occurring at X-rays and very-high-energy (VHE) 3-rays. A significant correlation (>3σ) between X-rays and VHE 3-rays is measured, supporting leptonic scenarios to explain the variable parts of the emission, also during low activity. This is further supported when we extend our data from 2008 to 2020, and identify, for the first time, significant correlations between the Swift X-Ray Telescope and Fermi-LAT. We additionally find correlations between high-energy 3-rays and radio, with the radio lagging by more than 100 days, placing the 3-ray emission zone upstream of the radio-bright regions in the jet. Furthermore, Mrk 501 showed a historically low activity in X-rays and VHE 3-rays from mid-2017 to mid-2019 with a stable VHE flux (>0.2 TeV) of 5% the emission of the Crab Nebula. The broadband spectral energy distribution (SED) of this 2 yr long low state, the potential baseline emission of Mrk 501, can be characterized with one-zone leptonic models, and with (lepto)-hadronic models fulfilling neutrino flux constraints from IceCube. We explore the time evolution of the SED toward the low state, revealing that the stable baseline emission may be ascribed to a standing shock, and the variable emission to an additional expanding or traveling shock.
UR - http://www.scopus.com/inward/record.url?scp=85164928905&partnerID=8YFLogxK
U2 - 10.3847/1538-4365/acc181
DO - 10.3847/1538-4365/acc181
M3 - Article
AN - SCOPUS:85164928905
SN - 0067-0049
VL - 266
JO - Astrophysical Journal, Supplement Series
JF - Astrophysical Journal, Supplement Series
IS - 2
M1 - 37
ER -