Multifunctional Effect of p-Doping, Antireflection, and Encapsulation by Polymeric Acid for High Efficiency and Stable Carbon Nanotube-Based Silicon Solar Cells

Research output: Contribution to journalArticle

Researchers

  • Yang Qian
  • Il Jeon
  • Ya Lun Ho
  • Changhyun Lee
  • Sujeong Jeong
  • Clement Delacou
  • Seungju Seo
  • Anton Anisimov
  • Head of Department Esko Kauppinen

  • Yutaka Matsuo
  • Yoonmook Kang
  • Hae Seok Lee
  • Donghwan Kim
  • Jean Jacques Delaunay
  • Shigeo Maruyama

Research units

  • University of Tokyo
  • Korea University
  • Canatu Ltd.
  • National Institute of Advanced Industrial Science and Technology

Abstract

Silicon solar cells among different types of solar energy harvesters have entered the commercial market owing to their high power conversion efficiency and stability. By replacing the electrode and the p-type layer by a single layer of carbon nanotubes, the device can be further simplified. This greatly augments the attractiveness of silicon solar cells in the light of raw material shortages and the solar payback period, as well as lowering the fabrication costs. However, carbon nanotube-based silicon solar cells still lack device efficiency and stability. These can be improved by chemical doping, antireflection coating, and encapsulation. In this work, the multifunctional effects of p-doping, antireflection, and encapsulation are observed simultaneously, by applying a polymeric acid. This method increases the power conversion efficiency of single-walled carbon nanotube-based silicon solar cells from 9.5% to 14.4% and leads to unprecedented device stability of more than 120 d under severe conditions. In addition, the polymeric acid-applied carbon nanotube-based silicon solar cells show excellent chemical and mechanical robustness. The obtained stable efficiency stands the highest among the reported carbon nanotube-based silicon solar cells.

Details

Original languageEnglish
Article number1902389
Pages (from-to)1-8
Number of pages8
JournalAdvanced Energy Materials
Volume10
Issue number1
Early online date1 Jan 2019
Publication statusPublished - 20 Nov 2019
MoE publication typeA1 Journal article-refereed

    Research areas

  • antireflection, carbon nanotubes, doping, Nafion, silicon solar cells

ID: 39309487