Motion of Heavy Particles on a Submerged Chladni Plate

Research output: Contribution to journalArticleScientificpeer-review


Research units


Heavy particles are traditionally believed to gather at the nodes of a resonating plate, forming standard Chladni patterns. Here, for the first time, we experimentally show that heavy particles, i.e., sub-mm particles, can move towards the antinodes of a resonating plate. By submerging the resonating plate inside a fluidic medium, the acoustic radiation force and the lateral effective weight become dominant at the sub-mm scale. Those forces, averaged over a vibration cycle, move the particles towards the antinodes and generate sophisticated patterns. We create a statistical model that relates the complex motion of particles to their locations and plate vibration frequencies in a wide spectrum of both resonant and nonresonant frequencies. Additionally, we employ our model to control the motion of single particles and a swarm of particles on the submerged plate. Our device can move particles with sufficient power at an exceptionally wide frequency range, potentially opening a path to new particle manipulation techniques at sub-mm scale in fluidic media.


Original languageEnglish
Article number184301
Pages (from-to)1-5
JournalPhysical Review Letters
Issue number18
Publication statusPublished - 10 May 2019
MoE publication typeA1 Journal article-refereed

Download statistics

No data available

ID: 33780027