Projects per year
Abstract
Mixed-dimensional heterostructures which combine materials with different dimensions have emerged to expand the scope and functionality of van der Waals heterostructures. Here, a direct synthesis method of molybdenum disulfide/double-wall carbon nanotube (MoS2/DWCNT) mixed-dimensional heterostructures by sulfurating a molten salt, Na2MoO4, on a substrate covered with a DWCNT film is reported. The synthesized heterostructures are comprehensively characterized and their stacking order is confirmed to be MoS2 under the DWCNTs, although the DWCNT film is transferred on the substrate first. Moreover, field-effect transistors based on the heterostructure are fabricated for photodetection, and an abnormal negative photoresponse is discovered due to the strong carrier transfer in the mixed-dimensional heterostructures under light incidence. The MoS2/DWCNT heterostructure results provide a new approach for the synthesis and applications of mixed-dimensional heterostructures.
Original language | English |
---|---|
Article number | 2200193 |
Journal | Advanced Materials Interfaces |
Volume | 9 |
Issue number | 13 |
Early online date | 18 Mar 2022 |
DOIs | |
Publication status | Published - 4 May 2022 |
MoE publication type | A1 Journal article-refereed |
Keywords
- chemical vapor deposition
- double-wall carbon nanotube
- mixed-dimensional heterostructure
- molybdenum disulfide
- negative photoresponse
- stacking order
Fingerprint
Dive into the research topics of 'Molybdenum Disulfide/Double-Wall Carbon Nanotube Mixed-Dimensional Heterostructures'. Together they form a unique fingerprint.-
FEMTOCHIP: FEMTOSECOND LASER ON A CHIP
Sun, Z., Li, D., Liu, P., Turunen, M., Das, S., Mohsen, A., Liapis, A. & Atalaia Rosa, J.
01/03/2021 → 29/02/2024
Project: EU: Framework programmes funding
-
FAST: Ultrafast Data Production with Broadband Photodetectors for Active Hyperspectral Space Imaging
Sun, Z., Akkanen, S., Pajunpää, T., Cui, L., Nigmatulin, F. & Das, S.
01/01/2021 → 31/12/2023
Project: Academy of Finland: Other research funding
-
NOIMO: Novel optical isolators to continue Moore's law in photonics integration
01/09/2020 → 31/08/2024
Project: Academy of Finland: Other research funding