Projects per year
Abstract
Mutable collagenous tissues (MCTs) from echinoderms (e.g., sea stars, sea urchins) possess the remarkable ability to change their mechanical properties rapidly and reversibly thanks to the release of effector molecules regulating the number of cross-links between collagen fibrils. Among these effector molecules, tensilin has been identified as a stiffening factor in sea cucumber MCTs. Since its discovery and description twenty years ago, tensilin orthologs have been identified in a few sea cucumber species but no novel information about its molecular mode of action has been reported. In this study, using a combination of in silico analyses, we identified the tensilin present in the dermis of Holothuria forskali, Hf-(D)Tensilin. Anti-peptide antibodies showed that this protein is localised in the secretory granules of type 2 juxtaligamental-like cells, a MCT specific cell type. We then used the bacterium E. coli to produce recombinantly Hf-(D)Tensilin and confirmed its stiffening effect on pieces of the dermis and its aggregation effect on collagen fibrils extracted from the sea cucumber dermis. To investigate how tensilin can cross-bridge collagen fibrils, truncated recombinant tensilins were also produced and used in combination with various compounds. Results suggest that two types of interactions contribute to the aggregation effect of tensilin on the fibrils: (1) the N-terminal NTR TIMP like domain of the protein interacts strongly with sulfated GAGs attached to the surface of the collagen fibrils, and (2) the C-terminal part of the protein is involved in its dimerisation/oligomerisation through ionic but possibly also cation-π and hydrophobic interactions.
Original language | English |
---|---|
Pages (from-to) | 39-54 |
Number of pages | 16 |
Journal | Matrix Biology |
Volume | 108 |
Early online date | 11 Mar 2022 |
DOIs | |
Publication status | Published - Apr 2022 |
MoE publication type | A1 Journal article-refereed |
Keywords
- Collagen
- Extracellular matrix
- Holothuroidea
- Mutable collagenous tissue
- Recombinant protein
- Tensilin
Fingerprint
Dive into the research topics of 'Molecular mechanisms mediating stiffening in the mechanically adaptable connective tissues of sea cucumbers'. Together they form a unique fingerprint.-
CrossSilk: Durable and functional biomaterials from crosslinked non-canonical silk and cellulose composite
Aranko, S., Elfving, K., Shen, M., Fan, R. & Astapov, D.
01/09/2020 → 31/08/2024
Project: Academy of Finland: Other research funding
-
Engineering orthogonal protein-peptide pairs for the production of stronger recombinant spider silk
01/09/2017 → 31/08/2022
Project: Academy of Finland: Other research funding