TY - JOUR
T1 - Modelling-based experiment retrieval
T2 - A case study with gene expression clustering
AU - Blomstedt, Paul
AU - Dutta, Ritabrata
AU - Seth, Sohan
AU - Brazma, Alvis
AU - Kaski, Samuel
PY - 2016/5/1
Y1 - 2016/5/1
N2 - Motivation: Public and private repositories of experimental data are growing to sizes that require dedicated methods for finding relevant data. To improve on the state of the art of keyword searches from annotations, methods for content-based retrieval have been proposed. In the context of gene expression experiments, most methods retrieve gene expression profiles, requiring each experiment to be expressed as a single profile, typically of case versus control. A more general, recently suggested alternative is to retrieve experiments whose models are good for modelling the query dataset. However, for very noisy and high-dimensional query data, this retrieval criterion turns out to be very noisy as well. Results: We propose doing retrieval using a denoised model of the query dataset, instead of the original noisy dataset itself. To this end, we introduce a general probabilistic framework, where each experiment is modelled separately and the retrieval is done by finding related models. For retrieval of gene expression experiments, we use a probabilistic model called product partition model, which induces a clustering of genes that show similar expression patterns across a number of samples. The suggested metric for retrieval using clusterings is the normalized information distance. Empirical results finally suggest that inference for the full probabilistic model can be approximated with good performance using computationally faster heuristic clustering approaches (e.g. k-means). The method is highly scalable and straightforward to apply to construct a general-purpose gene expression experiment retrieval method.
AB - Motivation: Public and private repositories of experimental data are growing to sizes that require dedicated methods for finding relevant data. To improve on the state of the art of keyword searches from annotations, methods for content-based retrieval have been proposed. In the context of gene expression experiments, most methods retrieve gene expression profiles, requiring each experiment to be expressed as a single profile, typically of case versus control. A more general, recently suggested alternative is to retrieve experiments whose models are good for modelling the query dataset. However, for very noisy and high-dimensional query data, this retrieval criterion turns out to be very noisy as well. Results: We propose doing retrieval using a denoised model of the query dataset, instead of the original noisy dataset itself. To this end, we introduce a general probabilistic framework, where each experiment is modelled separately and the retrieval is done by finding related models. For retrieval of gene expression experiments, we use a probabilistic model called product partition model, which induces a clustering of genes that show similar expression patterns across a number of samples. The suggested metric for retrieval using clusterings is the normalized information distance. Empirical results finally suggest that inference for the full probabilistic model can be approximated with good performance using computationally faster heuristic clustering approaches (e.g. k-means). The method is highly scalable and straightforward to apply to construct a general-purpose gene expression experiment retrieval method.
UR - http://www.scopus.com/inward/record.url?scp=84966339575&partnerID=8YFLogxK
U2 - 10.1093/bioinformatics/btv762
DO - 10.1093/bioinformatics/btv762
M3 - Article
AN - SCOPUS:84966339575
SN - 1367-4803
VL - 32
SP - 1388
EP - 1394
JO - Bioinformatics
JF - Bioinformatics
IS - 9
ER -