Microstructure and Properties of Additively Manufactured AlCoCr0.75Cu0.5FeNi Multicomponent Alloy: Controlling Magnetic Properties by Laser Powder Bed Fusion via Spinodal Decomposition

Xuan Yang*, Oleg Heczko, Joonas Lehtonen, Roy Björkstrand, Mika Salmi, Volker Uhlenwinkel, Yanling Ge, Simo-Pekka Hannula

*Corresponding author for this work

Research output: Contribution to journalArticleScientificpeer-review

5 Citations (Scopus)
57 Downloads (Pure)

Abstract

A non-equiatomic AlCoCr0.75Cu0.5FeNi alloy has been identified as a potential high strength alloy, whose microstructure and consequently properties can be widely varied. In this research, the phase structure, hardness, and magnetic properties of AlCoCr0.75Cu0.5FeNi alloy fabricated by laser powder bed fusion (LPBF) are investigated. The results demonstrate that laser power, scanning speed, and volumetric energy density (VED) contribute to different aspects in the formation of microstructure thus introducing alterations in the properties. Despite the different input parameters studied, all the as-built specimens exhibit the body-centered cubic (BCC) phase structure, with the homogeneous elemental distribution at the micron scale. A microhardness of up to 604.6 ± 6.8 HV0.05 is achieved owing to the rapidly solidified microstructure. Soft magnetic behavior is determined in all as-printed samples. The saturation magnetization (Ms) is dependent on the degree of spinodal decomposition, i.e., the higher degree of decomposition into A2 and B2 structure results in a larger Ms. The results introduce the possibility to control the degree of spinodal decomposition and thus the degree of magnetization by altering the input parameters of the LPBF process. The disclosed application potentiality of LPBF could benefit the development of new functional materials.

Original languageEnglish
Article number1801
Number of pages24
JournalMaterials
Volume15
Issue number5
Early online date28 Feb 2022
DOIs
Publication statusPublished - 1 Mar 2022
MoE publication typeA1 Journal article-refereed

Keywords

  • Direct metal laser sintering
  • High-entropy alloys
  • Laser powder bed fusion
  • Magnetic properties
  • Selective laser melting
  • Spinodal decomposition

Fingerprint

Dive into the research topics of 'Microstructure and Properties of Additively Manufactured AlCoCr0.75Cu0.5FeNi Multicomponent Alloy: Controlling Magnetic Properties by Laser Powder Bed Fusion via Spinodal Decomposition'. Together they form a unique fingerprint.

Cite this