Microstructural characteristics of vehicle-aged heavy-duty diesel oxidation catalyst and natural gas three-way catalyst

Research output: Contribution to journalArticleScientificpeer-review

Researchers

  • Tomi Kanerva
  • Mari Honkanen
  • Tanja Kolli
  • Olli Heikkinen
  • Kauko Kallinen
  • Tuomo Saarinen
  • Jouko Lahtinen

  • Eva Olsson
  • Riitta L. Keiski
  • Minnamari Vippola

Research units

  • Tampere University
  • Finnish Institute of Occupational Health
  • University of Oulu
  • Dinex Finland Oy
  • SSAB
  • Sandvik Mining and Construction Oy
  • Chalmers University of Technology

Abstract

Techniques to control vehicle engine emissions have been under increasing need for development during the last few years in the more and more strictly regulated society. In this study, vehicle-aged heavy-duty catalysts from diesel and natural gas engines were analyzed using a cross-sectional electron microscopy method with both a scanning electron microscope and a transmission electron microscope. Also, additional supporting characterization methods including X-ray diffractometry, X-ray photoelectron spectroscopy, Fourier-transform infrared spectroscopy and catalytic performance analyses were used to reveal the ageing effects. Structural and elemental investigations were performed on these samples, and the effect of real-life ageing of the catalyst was studied in comparison with fresh catalyst samples. In the real-life use of two different catalysts, the poison penetration varied greatly depending on the engine and fuel at hand: the diesel oxidation catalyst appeared to suffer more thorough changes than the natural gas catalyst, which was affected only in the inlet part of the catalyst. The most common poison, sulphur, in the diesel oxidation catalyst was connected to cerium-rich areas. On the other hand, the severities of the ageing effects were more pronounced in the natural gas catalyst, with heavy structural changes in the washcoat and high concentrations of poisons, mainly zinc, phosphorus and silicon, on the surface of the inlet part.

Details

Original languageEnglish
Article number137
Pages (from-to)1-15
JournalCATALYSTS
Volume9
Issue number2
Publication statusPublished - 1 Feb 2019
MoE publication typeA1 Journal article-refereed

    Research areas

  • Catalyst deactivation, Diesel, Natural gas, Poisoning, SEM, TEM

Download statistics

No data available

ID: 32623694