Abstract
Most studies that examine CO2-neutral, or near CO2-neutral, power systems by using energy system models investigate Europe or the United States, while similar studies for other regions are rare. In this paper, we focus on the Middle East and North Africa (MENA), where weather conditions, especially for solar, differ substantially from those in Europe. We use a green-field linear capacity expansion model with over-night investment to assess the effect on the system cost of (i) limiting/expanding the amount of land available for wind and solar farms, (ii) allowing for nuclear power and (iii) disallowing for international transmission. The assessment is done under three different cost regimes for solar PV and battery storage. First, we find that the amount of available land for wind and solar farms can have a significant impact on the system cost, with a cost increase of 0–50% as a result of reduced available land. In MENA, the impact on system cost from land availability is contingent on the PV and battery cost regime, while in Europe it is not. Second, allowing for nuclear power has a minor effect in MENA, while it may decrease the system cost in Europe by up to 20%. In Europe, the effect on system cost from allowing for nuclear power is highly dependent on the PV and battery cost regime. Third, disallowing for international transmission increases the system cost by up to 25% in both Europe and MENA, and the cost increase depends on the cost regime for PV and batteries. The impacts on system cost from these three controversial and policy-relevant factors in a decarbonized power system thus play out differently, depending on (i) the region and (ii) uncertain future investment costs for solar PV and storage. We conclude that a renewable power system in MENA is likely to be less costly than one in Europe, irrespective of future uncertainties regarding investment cost for PV and batteries, and policies surrounding nuclear power, transmission, and land available for wind- and solar farms. In MENA, the system cost varies between 42 and 96 $/MWh. In Europe, the system cost varies between 51 and 102 $/MWh.
Original language | English |
---|---|
Article number | 100590 |
Number of pages | 12 |
Journal | Energy Strategy Reviews |
Volume | 33 |
DOIs | |
Publication status | Published - Jan 2021 |
MoE publication type | A1 Journal article-refereed |
Keywords
- Electricity system modeling
- Nuclear power
- Public concern
- Transmission
- Variable renewable energy
- Weather conditions