Projects per year
Abstract
We investigate the mechanism of binding of dopamine-conjugated carboxymethyl cellulose (DA-CMC) with carbon nanotubes (CNTs) and the strain-induced interfacial strengthening that takes place upon wet drawing and stretching filaments produced by wet-spinning. The filaments are known for their tensile strength (as high as 972 MPa and Young modulus of 84 GPa) and electrical conductivity (241 S cm-1). The role of axial orientation in the development of interfacial interactions and structural changes, enabling shear load bearing, is studied by molecular dynamics simulation, which further reveals the elasto-plasticity of the system. We propose that the reversible torsion of vicinal molecules and DA-CMC wrapping around CNTs are the main contributions to the interfacial strengthening of the filaments. Such effects play important roles in impacting the properties of filaments, including those related to electrothermal heating and sensing. Our findings contribute to a better understanding of high aspect nanoparticle assembly and alignment to achieve high-performance filaments.
Original language | English |
---|---|
Pages (from-to) | 16809–16819 |
Number of pages | 11 |
Journal | ACS Applied Materials and Interfaces |
Volume | 14 |
Issue number | 14 |
Early online date | 30 Mar 2022 |
DOIs | |
Publication status | Published - 13 Apr 2022 |
MoE publication type | A1 Journal article-refereed |
Keywords
- axial orientation
- carbon nanotube
- interfacial strengthening
- reversible torsion
- wet drawing
Fingerprint
Dive into the research topics of 'Mechanisms of Strain-Induced Interfacial Strengthening of Wet-Spun Filaments'. Together they form a unique fingerprint.Projects
- 1 Finished
-
BioELCell: Bioproducts Engineered from Lignocelluloses: from plants and upcycling to next generation materials
Rojas Gaona, O., Abidnejad, R., Ajdary, R., Bhattarai, M., Zhu, Y., Zhao, B., Robertson, D., Reyes Torres, G., Johansson, L., Garcia Greca, L., Klockars, K., Kämäräinen, T., Majoinen, J., Tardy, B., Dufau Mattos, B. & Ressouche, E.
30/07/2018 → 31/07/2023
Project: EU: ERC grants