Measuring MEG closer to the brain: Performance of on-scalp sensor arrays

Joonas Iivanainen*, Matti Stenroos, Lauri Parkkonen

*Corresponding author for this work

Research output: Contribution to journalArticleScientificpeer-review

111 Citations (Scopus)
342 Downloads (Pure)


Optically-pumped magnetometers (OPMs) have recently reached sensitivity levels required for magnetoencephalography (MEG). OPMs do not need cryogenics and can thus be placed within millimetres from the scalp into an array that adapts to the individual head size and shape, thereby reducing the distance from cortical sources to the sensors. Here, we quantified the improvement in recording MEG with hypothetical on-scalp OPM arrays compared to a 306-channel state-of-the-art SQUID array (102 magnetometers and 204 planar gradiometers). We simulated OPM arrays that measured either normal (nOPM; 102 sensors), tangential (tOPM; 204 sensors), or all components (aOPM; 306 sensors) of the magnetic field. We built forward models based on magnetic resonance images of 10 adult heads; we employed a three-compartment boundary element model and distributed current dipoles evenly across the cortical mantle. Compared to the SQUID magnetometers, nOPM and tOPM yielded 7.5 and 5.3 times higher signal power, while the correlations between the field patterns of source dipoles were reduced by factors of 2.8 and 3.6, respectively. Values of the field-pattern correlations were similar across nOPM, tOPM and SQUID gradiometers. Volume currents reduced the signals of primary currents on average by 10%, 72% and 15% in nOPM, tOPM and SQUID magnetometers, respectively. The information capacities of the OPM arrays were clearly higher than that of the SQUID array. The dipole-localization accuracies of the arrays were similar while the minimum-norm-based point-spread functions were on average 2.4 and 2.5 times more spread for the SQUID array compared to nOPM and tOPM arrays, respectively.

Original languageEnglish
Pages (from-to)542-553
Number of pages12
Publication statusPublished - 15 Feb 2017
MoE publication typeA1 Journal article-refereed


  • Atomic magnetometer
  • Lead field
  • Magnetoencephalography
  • Optically-pumped magnetometer
  • Sensor array
  • Superconducting quantum interference device


Dive into the research topics of 'Measuring MEG closer to the brain: Performance of on-scalp sensor arrays'. Together they form a unique fingerprint.

Cite this