Projects per year
Abstract
Topological superconductors represent one of the key hosts of Majorana-based topological quantum computing. Typical scenarios for one-dimensional (1D) topological superconductivity assume a broken gauge symmetry associated to a superconducting state. However, no interacting 1D many-body system is known to spontaneously break gauge symmetries. Here, we show that zero modes emerge in a many-body system without gauge symmetry breaking and in the absence of superconducting order. In particular, we demonstrate that Majorana zero modes of the symmetry-broken superconducting state are continuously connected to these zero-mode excitations, demonstrating that zero-bias anomalies may emerge in the absence of gauge symmetry breaking. We demonstrate that these many-body zero modes share the robustness features of the Majorana zero modes of symmetry-broken topological superconductors. We further show that the interface between the interacting model and a 1D topological superconductor does not support Majorana modes. We introduce a bosonization formalism to analyze these excitations and show that a ground state analogous to a topological superconducting state can be analytically found in a certain limit. Our results demonstrate that robust Majorana-like zero modes may appear in a many-body system without gauge symmetry breaking, thus introducing a family of protected excitations with no single-particle analogs.
Original language | English |
---|---|
Article number | 023002 |
Number of pages | 11 |
Journal | PHYSICAL REVIEW RESEARCH |
Volume | 3 |
Issue number | 2 |
DOIs | |
Publication status | Published - 1 Apr 2021 |
MoE publication type | A1 Journal article-refereed |
Keywords
- TOPOLOGICAL SUPERCONDUCTIVITY
- QUANTUM
- PHASE
- FERMIONS
Fingerprint
Dive into the research topics of 'Many-body Majorana-like zero modes without gauge symmetry breaking'. Together they form a unique fingerprint.-
Lado Jose AT-palkka: Engineering fractional quantum matter in twisted van der Waals materials
Lado, J. (Principal investigator)
01/09/2020 → 31/08/2025
Project: Academy of Finland: Other research funding
-
Lado Jose AT-kulut: Engineering fractional quantum matter in twisted van der Waals materials
Lado, J. (Principal investigator), Hyart, T. (Project Member), Kumar, P. (Project Member) & Koch, R. (Project Member)
01/09/2020 → 31/08/2023
Project: Academy of Finland: Other research funding
-
QUESS - Quantum Environment Engineering for Steered Systems
Möttönen, M. (Principal investigator), Abuzaid, O. (Project Member), Partanen, M. (Project Member), Keränen, A. (Project Member), Tiurev, K. (Project Member), Blanchet, F. (Project Member), Girard, J.-P. (Project Member), Ikonen, J. (Project Member), Mäkinen, A. (Project Member), Tuohino, S. (Project Member), Tuorila, J. (Project Member), Mörstedt, T. (Project Member), Ma, J. (Project Member), Oinonen, N. (Project Member), Sah, A. (Project Member), Kohvakka, K. (Project Member), Silveri, M. (Project Member), Gunyho, A. (Project Member) & Kivijärvi, H. (Project Member)
23/12/2016 → 31/12/2021
Project: EU: ERC grants