Magnon Bose-Einstein condensates : From time crystals and quantum chromodynamics to vortex sensing and cosmology

J. T. Mäkinen*, S. Autti*, V. B. Eltsov*

*Corresponding author for this work

Research output: Contribution to journalShort surveypeer-review

16 Downloads (Pure)

Abstract

Under suitable experimental conditions, collective spin-wave excitations, magnons, form a Bose-Einstein condensate (BEC), where the spins precess with a globally coherent phase. Bose-Einstein condensation of magnons has been reported in a few systems, including superfluid phases of 3He, solid state systems, such as yttrium-iron-garnet films, and cold atomic gases. The superfluid phases of 3He provide a nearly ideal test bench for coherent magnon physics owing to experimentally proven spin superfluidity, the long lifetime of the magnon condensate, and the versatility of the accessible phenomena. We first briefly recap the properties of the different magnon BEC systems, with focus on superfluid 3He. The main body of this review summarizes recent advances in the application of magnon BEC as a laboratory to study basic physical phenomena connecting to diverse areas from particle physics and cosmology to vortex dynamics and new phases of condensed matter. This line of research complements the ongoing efforts to utilize magnon BECs as probes and components for potentially room-temperature quantum devices. In conclusion, we provide a roadmap for future directions in the field of applications of magnon BEC to fundamental research.

Original languageEnglish
Article number100502
Pages (from-to)1-14
Number of pages14
JournalApplied Physics Letters
Volume124
Issue number10
DOIs
Publication statusPublished - 4 Mar 2024
MoE publication typeNot Eligible

Fingerprint

Dive into the research topics of 'Magnon Bose-Einstein condensates : From time crystals and quantum chromodynamics to vortex sensing and cosmology'. Together they form a unique fingerprint.

Cite this