Machine learning driven simulated deposition of carbon films: From low-density to diamondlike amorphous carbon

Miguel A. Caro*, Gabor Csanyi, Tomi Laurila, Volker L. Deringer

*Corresponding author for this work

Research output: Contribution to journalArticleScientificpeer-review

55 Citations (Scopus)
255 Downloads (Pure)

Abstract

Amorphous carbon (a-C) materials have diverse interesting and useful properties, but the understanding of their atomic-scale structures is still incomplete. Here, we report on extensive atomistic simulations of the deposition and growth of a-C films, describing interatomic interactions using a machine learning (ML) based Gaussian approximation potential model. We expand widely on our initial work [M. A. Caro et al., Phys. Rev. Lett. 120, 166101 (2018)] by now considering a broad range of incident ion energies, thus modeling samples that span the entire range from low-density (sp(2)-rich) to high-density (sp(3)-rich, "diamondlike") amorphous forms of carbon. Two different mechanisms are observed in these simulations, depending on the impact energy: low-energy impacts induce sp- and sp(2)-dominated growth directly around the impact site, whereas high-energy impacts induce peening. Furthermore, we propose and apply a scheme for computing the anisotropic elastic properties of the a-C films. Our work provides fundamental insight into this intriguing class of disordered solids, as well as a conceptual and methodological blueprint for simulating the atomic-scale deposition of other materials with ML driven molecular dynamics.

Original languageEnglish
Article number174201
Number of pages21
JournalPhysical Review B
Volume102
Issue number17
DOIs
Publication statusPublished - 2 Nov 2020
MoE publication typeA1 Journal article-refereed

Keywords

  • MOLECULAR-DYNAMICS SIMULATIONS
  • CROSS-SECTIONAL STRUCTURE
  • AB-INITIO SIMULATIONS
  • REACTIVE FORCE-FIELD
  • PLANE-WAVE
  • ELECTROCHEMICAL DETECTION
  • STRUCTURAL MOTIFS
  • TOTAL-ENERGY
  • GROWTH
  • POTENTIALS

Fingerprint

Dive into the research topics of 'Machine learning driven simulated deposition of carbon films: From low-density to diamondlike amorphous carbon'. Together they form a unique fingerprint.

Cite this