TY - JOUR
T1 - Machine Learning assisted design of tailor-made nanocellulose films
T2 - A combination of experimental and computational studies
AU - Özkan, Merve
AU - Karakoç, Alp
AU - Borghei, Maryam
AU - Wiklund, Jenny
AU - Rojas, Orlando J.
AU - Paltakari, Jouni
PY - 2019/1/1
Y1 - 2019/1/1
N2 - Nowadays, modern nanomaterial research is complemented by machine learning methods to reduce experimental costs and process time. With this motivation, here, we implemented artificial neural network (ANN), random forest (RF), and multiple linear regression (MLR) methods to predict the mechanical properties of three-component nanocomposite films consisting of polyvinyl alcohol (PVA) crosslinked 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) oxidized cellulose nanofibers (TOCNFs) and either ammonium zirconium carbonate (AZC) or glyoxal (Gx) using the mechanical properties of mono-component TOCNF films and two-component nanocomposites containing PVA, AZC, or Gx-crosslinked TOCNF as the input of prediction system. Prediction methods were evaluated with performance indicators and experimental data. Overall, MLR performed with least accuracy, whereas ANN prediction displayed the lowest error followed closely by RF. Additionally, the physically or/and chemically crosslinked hybrid films with optimized amount of crosslinkers resulted in structures with a strength to rupture that was significantly higher than that of the pure nanocellulose films (increases of up to ~90% in tensile strength and ~70% in Young's modulus). POLYM. COMPOS., 2019.
AB - Nowadays, modern nanomaterial research is complemented by machine learning methods to reduce experimental costs and process time. With this motivation, here, we implemented artificial neural network (ANN), random forest (RF), and multiple linear regression (MLR) methods to predict the mechanical properties of three-component nanocomposite films consisting of polyvinyl alcohol (PVA) crosslinked 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) oxidized cellulose nanofibers (TOCNFs) and either ammonium zirconium carbonate (AZC) or glyoxal (Gx) using the mechanical properties of mono-component TOCNF films and two-component nanocomposites containing PVA, AZC, or Gx-crosslinked TOCNF as the input of prediction system. Prediction methods were evaluated with performance indicators and experimental data. Overall, MLR performed with least accuracy, whereas ANN prediction displayed the lowest error followed closely by RF. Additionally, the physically or/and chemically crosslinked hybrid films with optimized amount of crosslinkers resulted in structures with a strength to rupture that was significantly higher than that of the pure nanocellulose films (increases of up to ~90% in tensile strength and ~70% in Young's modulus). POLYM. COMPOS., 2019.
UR - http://www.scopus.com/inward/record.url?scp=85063904987&partnerID=8YFLogxK
U2 - 10.1002/pc.25262
DO - 10.1002/pc.25262
M3 - Article
AN - SCOPUS:85063904987
SN - 0272-8397
JO - Polymer Composites
JF - Polymer Composites
ER -