Projects per year
Abstract
Oxidized tannic acid (OTA) is a useful biomolecule with a strong tendency to form complexes with metals and proteins. In this study we open the possibility to further the application of OTA when assembled as supramolecular systems, which typically exhibit functions that correlate with shape and associated morphological features. We used machine learning (ML) to selectively engineer OTA into particles encompassing one-dimensional to three-dimensional constructs. We employed Bayesian regression to correlate colloidal suspension conditions (pH and pKa) with the size and shape of the assembled colloidal particles. Fewer than 20 experiments were found to be sufficient to build surrogate model landscapes of OTA morphology in the experimental design space, which were chemically interpretable and endowed predictive power on data. We produced multiple property landscapes from the experimental data, helping us to infer solutions that would satisfy, simultaneously, multiple design objectives. The balance between data efficiency and the depth of information delivered by ML approaches testify to their potential to engineer particles, opening new prospects in the emerging field of particle morphogenesis, impacting bioactivity, adhesion, interfacial stabilization, and other functions inherent to OTA.
Original language | English |
---|---|
Pages (from-to) | 29-37 |
Number of pages | 9 |
Journal | MRS Bulletin |
Volume | 47 |
Issue number | 1 |
Early online date | 28 Feb 2022 |
DOIs | |
Publication status | Published - 2022 |
MoE publication type | A1 Journal article-refereed |
Keywords
- Gaussian process regression
- Morphology prediction
- Tannic acid
Fingerprint
Dive into the research topics of 'Machine learning as a tool to engineer microstructures: Morphological prediction of tannin-based colloids using Bayesian surrogate models'. Together they form a unique fingerprint.Projects
- 4 Finished
-
-: Finnish Center for Artificial Intelligence
Kaski, S. (Principal investigator)
01/01/2019 → 31/12/2022
Project: Academy of Finland: Other research funding
-
BioELCell: Bioproducts Engineered from Lignocelluloses: from plants and upcycling to next generation materials
Rojas, O. (Principal investigator), Abidnejad, R. (Project Member), Ajdary, R. (Project Member), Bhattarai, M. (Project Member), Zhu, Y. (Project Member), Zhao, B. (Project Member), Robertson, D. (Project Member), Reyes Torres, G. (Project Member), Johansson, L.-S. (Project Member), Greca, L. (Project Member), Klockars, K. (Project Member), Kämäräinen, T. (Project Member), Majoinen, J. (Project Member), Tardy, B. (Project Member), Dufau Mattos, B. (Project Member) & Ressouche, E. (Project Member)
30/07/2018 → 31/07/2023
Project: EU: ERC grants
-
FinnCERES: Competence Center for the Materials Bioeconomy: A Flagship for our Sustainable Future
Mäkelä, K. (Principal investigator)
01/05/2018 → 31/12/2022
Project: Academy of Finland: Other research funding
Equipment
-
-
OtaNano - Nanomicroscopy Center
Seitsonen, J. (Manager) & Rissanen, A. (Other)
OtaNanoFacility/equipment: Facility
-