Projects per year
Abstract
The combined atomic/molecular layer deposition (ALD/MLD) technique is emerging as a state-of-the-art synthesis route for new metal-organic thin-film materials with a multitude of properties by combining those of the inorganic and the organic material. A major part of the studies so far reported have focused on aluminum or zinc alkyls, so-called alucone and zincone films, typically grown from trimethyl aluminum (TMA) or diethyl zinc (DEZ) as the metal-bearing precursor, and a simple aliphatic bi-functional alcohol molecule such as ethylene glycol (EG) as the organic precursor. However, these common precursors possess certain disadvantages: both TMA and DEZ are pyrophoric, DEZ being additionally thermally unstable, while EG has a strong tendency for various unideal reaction modes. Here we report novel ALD/MLD processes for alucone and zincone films based on non-pyrophoric bis-diisopropylamido-[3-(N,N-dimethylamino)propyl] aluminum(iii) [Al(NiPr2)2(DMP)] and bis-3-(N,N-dimethylamino)propyl zinc(ii) [Zn(DMP)2] precursors in combination with hydroquinone (HQ) as the organic precursor. We demonstrate that the [Al(NiPr2)2(DMP)] + HQ and [Zn(DMP)2] + HQ ALD/MLD processes work even at record low deposition temperatures (140 °C and 60 °C, respectively) yielding high-quality and relatively stable Al-HQ and Zn-HQ thin films with appreciably high growth rates (2.8 Å / cycle and 3.2 Å / cycle, respectively). Moreover, these ALD/MLD processes are compatible with the corresponding ALD processes, i.e. [Al(NiPr2)2(DMP)] + H2O and [Zn(DMP)2] + H2O, for the Al2O3 and ZnO films, thus opening up new horizons for the fabrication of novel metal-oxide : organic superlattice structures for e.g. flexible gas-barrier coatings or wearable thermoelectrics.
Original language | English |
---|---|
Pages (from-to) | 14508-14516 |
Journal | Dalton Transactions |
Volume | 51 |
Issue number | 38 |
Early online date | 31 Aug 2022 |
DOIs | |
Publication status | Published - 14 Oct 2022 |
MoE publication type | A1 Journal article-refereed |
Fingerprint
Dive into the research topics of 'Low-temperature ALD/MLD growth of alucone and zincone thin films from non-pyrophoric precursors'. Together they form a unique fingerprint.Projects
- 1 Finished
-
ALPMOH: Atomic Layer Processing of Metals, Metal Oxide and Hybrid Thin Films for Advanced Applications
Karppinen, M. (Principal investigator)
16/02/2022 → 29/02/2024
Project: Academy of Finland: Other research funding
Equipment
-
Raw Materials Research Infrastructure
Karppinen, M. (Manager)
School of Chemical EngineeringFacility/equipment: Facility