Low-rank doubly stochastic matrix decomposition for cluster analysis

Zhirong Yang, Jukka Corander, Erkki Oja

Research output: Contribution to journalArticleScientificpeer-review

17 Citations (Scopus)
67 Downloads (Pure)


Cluster analysis by nonnegative low-rank approximations has experienced a remarkable progress in the past decade. However, the majority of such approximation approaches are still restricted to nonnegative matrix factorization (NMF) and su er from the following two drawbacks: 1) they are unable to produce balanced partitions for large-scale manifold data which are common in real-world clustering tasks; 2) most existing NMF-type clustering methods cannot automatically determine the number of clusters. We propose a new low-rank learning method to address these two problems, which is beyond matrix factorization. Our method approximately decomposes a sparse input similarity in a normalized way and its objective can be used to learn both cluster assignments and the number of clusters. For efficient optimization, we use a relaxed formulation based on Data-Cluster-Data random walk, which is also shown to be equivalent to low-rank factorization of the doublystochastically normalized cluster incidence matrix. The probabilistic cluster assignments can thus be learned with a multiplicative majorization-minimization algorithm. Experimental results show that the new method is more accurate both in terms of clustering large-scale manifold data sets and of selecting the number of clusters.

Original languageEnglish
Number of pages25
JournalJournal of Machine Learning Research
Publication statusPublished - 1 Oct 2016
MoE publication typeA1 Journal article-refereed


  • Cluster analysis
  • Doubly stochastic matrix
  • Manifold
  • Multiplicative updates
  • Probabilistic relaxation


Dive into the research topics of 'Low-rank doubly stochastic matrix decomposition for cluster analysis'. Together they form a unique fingerprint.

Cite this