Local relaxation of residual stress in high-strength steel welded joints treated by HFMI

Y Ono*, H Remes, K Kinoshita, HC Yildirim, A Nussbaumer

*Corresponding author for this work

Research output: Contribution to journalArticleScientificpeer-review

28 Downloads (Pure)

Abstract

This research studies the influence of high-peak loads on local relaxation of residual stress and fatigue damage in high-strength steel welded joints treated by high-frequency mechanical impact (HFMI) treatment. The joint behavior is simulated with elastic–plastic finite element analyses that account for the combined effect of geometry, residual stress, and material properties. This simulation uses two treated geometry models: with or without surface roughness on HFMI groove, and two material properties: S690QL and AH36 structural steels. The results show that surface roughness and load history, including high-peak loads, significantly influence fatigue response. It is revealed that the model neglecting the surface roughness cannot represent the amount of residual stress change and fatigue damage at less than 100 µm depth from the surface. In addition, the local yield strength in the HFMI-treated zone affects the plasticity behavior near the surface imperfection under the high-peak loads, which provides comparatively different fatigue damage between S690QL and AH36 in some cases. As a result, this study provides the further understanding needed to develop a robust modeling approach to the fatigue life estimation of HFMI-treated welds subjected to high-peak loads.
Original languageEnglish
Pages (from-to)2187-2202
Number of pages16
JournalWelding in the World
Volume68
Issue number8
Early online date3 Jun 2024
DOIs
Publication statusPublished - Aug 2024
MoE publication typeA1 Journal article-refereed

Keywords

  • Hfmi
  • High-strength steel
  • Relaxation
  • Residual stress
  • Surface profile
  • Surface roughness
  • Welded joints
  • HFMI

Fingerprint

Dive into the research topics of 'Local relaxation of residual stress in high-strength steel welded joints treated by HFMI'. Together they form a unique fingerprint.

Cite this