Light Pollution, Circadian Photoreception, and Melatonin in Vertebrates

Maja Grubisic, Abraham Haim, Pramod Bhusal, Davide M. Dominoni, Katharina M.A. Gabriel, Andreas Jechow, Franziska Kupprat, Amit Lerner, Paul Marchant, William Riley, Katarína Stebelová, Roy H. A. Van Grunsven, Michal Zeman, Abed Zubidat, Franz Hölker

Research output: Contribution to journalArticleScientificpeer-review

6 Citations (Scopus)
39 Downloads (Pure)

Abstract

Artificial light at night (ALAN) is increasing exponentially worldwide, accelerated by the transition to new efficient lighting technologies. However, ALAN and resulting light pollution can cause unintended physiological consequences. In vertebrates, production of melatonin—the “hormone of darkness” and a key player in circadian regulation—can be suppressed by ALAN. In this paper, we provide an overview of research on melatonin and ALAN in vertebrates. We discuss how ALAN disrupts natural photic environments, its effect on melatonin and circadian rhythms, and different photoreceptor systems across vertebrate taxa. We then present the results of a systematic review in which we identified studies on melatonin under typical light-polluted conditions in fishes, amphibians, reptiles, birds, and mammals, including humans. Melatonin is suppressed by extremely low light intensities in many vertebrates, ranging from 0.01–0.03 lx for fishes and rodents to 6 lx for sensitive humans. Even lower, wavelength-dependent intensities are implied by some studies and require rigorous testing in ecological contexts. In many studies, melatonin suppression occurs at the minimum light levels tested, and, in better-studied groups, melatonin suppression is reported to occur at lower light levels. We identify major research gaps and conclude that, for most groups, crucial information is lacking. No studies were identified for amphibians and reptiles and long-term impacts of low-level ALAN exposure are unknown. Given the high sensitivity of vertebrate melatonin production to ALAN and the paucity of available information, it is crucial to research impacts of ALAN further in order to inform effective mitigation strategies for human health and the wellbeing and fitness of vertebrates in natural ecosystems.
Original languageEnglish
Article number6400
Number of pages51
JournalSUSTAINABILITY
Volume11
DOIs
Publication statusPublished - 2019
MoE publication typeA1 Journal article-refereed

Keywords

  • ALAN
  • Artificial light at night
  • Biological rhythm
  • Circadian rhythm
  • Melatonin

Fingerprint Dive into the research topics of 'Light Pollution, Circadian Photoreception, and Melatonin in Vertebrates'. Together they form a unique fingerprint.

  • Cite this

    Grubisic, M., Haim, A., Bhusal, P., Dominoni, D. M., Gabriel, K. M. A., Jechow, A., ... Hölker, F. (2019). Light Pollution, Circadian Photoreception, and Melatonin in Vertebrates. SUSTAINABILITY, 11, [6400]. https://doi.org/10.3390/su11226400